更多“曲线y=lnx上与直线垂直的切线方程为”相关问题
  • 第1题:

    曲线y=lnx在点(1,0)的切线方程是()。


    正确答案:y=x-1

  • 第2题:

    设曲线y=y(x)上点P(0,4)处的切线垂直于直线x-2y+5=0,且该点满足微分方程y″+2y′+y=0,则此曲线方程为( )。

    A.
    B.
    C.
    D.

    答案:D
    解析:

  • 第3题:

    已知曲线L的参数方程是,则曲线L上t=π/2处的切线方程是:
    A. x+y=π B.x-y=π-4 C. x-y=π D.x+y=π-4


    答案:B
    解析:
    利用点斜式写出切线方程。

  • 第4题:

    设曲线y=^e1?x2与直线x=-1的交点为P,则曲线在点P处的切线方程是(  )

    A.2x-y+2=0
    B.2x+y+1=0
    C.2x+y-3=0
    D.2x-y+3=0

    答案:D
    解析:


    @##

  • 第5题:

    曲线y=lnx在点(1,0)处的切线方程为.


    答案:
    解析:
    【答案】Y=x-1【考情点拨】本题考查了切线方程的知识点.

  • 第6题:

    若曲线y=x4的一条切线I与直线x+4y-8=0垂直,求切线I的方程。


    答案:
    解析:

  • 第7题:

    求函数y=x-lnx的单调区间,并求该曲线在点(1,1)处的切线l的方程.


    答案:
    解析:


    【评析】求函数f(x)的单调区间,应先判定函数的定义域.求出函数的驻点,即y′=0的点;求出y的不可导的点,再找出y′>0时x的取值范围,这个范围可能是一个区间,也可能为几个区间.

  • 第8题:

    设直线的方程为x=y-1=z,平面的方程为x-2y+z=0,则直线与平面()。

    • A、重合
    • B、平行不重合
    • C、垂直相交
    • D、相交不垂直

    正确答案:B

  • 第9题:

    单选题
    方程y′=(sinlnx+coslnx+a)y的通解为(  )。
    A

    ln|y|=xcos(lnx)+ax2+C

    B

    ln|y|=xcos(lnx)+ax+C

    C

    ln|y|=xsin(lnx)+ax2+C

    D

    ln|y|=xsin(lnx)+ax+C


    正确答案: A
    解析:
    原方程为y′=(sinlnx+coslnx+a)y,分离变量并积分得lny=ax+∫(sinlnx+coslnx)dx=∫xcoslnxdlnx+∫sinlnxdx=∫xd(sinlnx)+∫sinlnxdx=xsinlnx+C。故原方程的通解为ln|y|=xsin(lnx)+ax+C。

  • 第10题:

    填空题
    函数y=f(x)是由方程xy+2lnx=y4所确定,则曲线y=f(x)在点(1,1)处的切线方程为____。

    正确答案: x-y=0
    解析:
    xy+2lnx=y4两端对x求导,得y+xy′+2/x=4y3·y′。x=1时,y=1,y′(1)=1,则切线方程为y-1=x-1,即x-y=0。

  • 第11题:

    单选题
    函数y=f(x)是由方程xy+2lnx=y4所确定,则曲线y=f(x)在点(1,1)处的切线方程为(  )。
    A

    -x-y=0

    B

    x-y-1=0

    C

    x-y=0

    D

    x+y=0


    正确答案: A
    解析:
    xy+2lnx=y4两端对x求导,得y+xy′+2/x=4y3·y′。x=1时,y=1,y′(1)=1,则切线方程为y-1=x-1,即x-y=0。

  • 第12题:

    单选题
    曲线y=y(x)经过原点且在原点处的切线与直线2x+y=6平行,而y=y(x)满足方程y″-2y′+5y=0,则此曲线的方程为(  )。
    A

    y=excos2x

    B

    y=-excos2x

    C

    y=exsin2x

    D

    y=-exsin2x


    正确答案: A
    解析:
    所求曲线方程满足方程y″-2y′+5y=0,其特征方程为r2-2r+5=0,解得r12=1±2i。故方程y″-2y′+5y=0的通解为y=ex(c1cos2x+c2sin2x)。又因为所求曲线经过原点,且在原点处的切线与直线2x+y=6平行,故y(0)=0,y′(0)=-2,将其代入y=ex(c1cos2x+c2sin2x)得c1=0,c2=-1。故所求曲线方程为y=-exsin2x。

  • 第13题:

    过原点作曲线y=ex的切线,则切线的方程为(62)。

    A.y=ex

    B.y=ex

    C.y=x

    D.


    正确答案:B
    解析:本题中f(x)=exf′(x)=ex设所求切线方程为y-ex0=ex0(x-x0)由于切线过原点,所以0-ex0=ex0(0-x0)解得x0=1故所求切线方程为,y-e=e(x-1)即y=ex,答案选B。

  • 第14题:

    已知齐次方程xy´´+y´=0有一个特解为lnx,则该方程的通解为( ).

    A.
    B.
    C.y=C(lnx+1)
    D.y=C(lnx+x)

    答案:A
    解析:

  • 第15题:

    过坐标原点作曲线y=lnx的切线,该切线与曲线y=lnx及x轴围成平面图形D。D的面积A和D绕直线x=e旋转一周所得旋转体的体积V分别为(  )。


    答案:B
    解析:
    先求出切点坐标及切线方程,再用定积分求面积A;旋转体体积可用一大立体(圆锥)体积减去一小立体体积进行计算。

  • 第16题:

    已知曲线C为y=2x2及直线L为y=4x.
    ①求由曲线C与直线L所围成的平面图形的面积S;
    ②求曲线C的平行于直线L的切线方程.


    答案:
    解析:
    画出平面图形如图l一3—4阴影所示.
    图1—3—3

    图1—3—4

  • 第17题:

    曲线y=lnx在点(e,1)处切线的斜率为( ).《》( )


    答案:D
    解析:

  • 第18题:

    若曲线y=χ4的一条切线I与直线χ+4y-8=0垂直,求切线I的方程。


    答案:
    解析:

  • 第19题:

    已知齐次方程xy"+y’=0有一个特解为lnx,则该方程的通解为().

    • A、y=C1lnx+C2
    • B、y=C1lnx+C2X
    • C、y=C(lnx+1)
    • D、y=C(lnx+x)

    正确答案:A

  • 第20题:

    单选题
    方程y′=(sinlnx+coslnx+a)y的通解为(  )。
    A

    lny=xsin(lnx)+ax+C

    B

    lny=xcos(lnx)+ax+C

    C

    ln|y|=xsin(lnx)+ax+C

    D

    ln|y|=xcos(lnx)+ax+C


    正确答案: C
    解析:
    原方程为y′=(sinlnx+coslnx+a)y,分离变量并积分得lny=ax+∫(sinlnx+coslnx)dx=∫xcoslnxdlnx+∫sinlnxdx=∫xd(sinlnx)+∫sinlnxdx=xsinlnx+C。故原方程的通解为ln|y|=xsinlnx+ax+C。

  • 第21题:

    填空题
    曲线y=y(x)经过原点且在原点处的切线与直线2x+y=6平行,而y=y(x)满足方程y″-2y′+5y=0,则此曲线的方程为____。

    正确答案: y=-exsin2x
    解析:
    所求曲线方程满足方程y″-2y′+5y=0,其特征方程为r2-2r+5=0,解得r12=1±2i。故方程y″-2y′+5y=0的通解为y=ex(c1cos2x+c2sin2x)。又因为所求曲线经过原点,且在原点处的切线与直线2x+y=6平行,故y(0)=0,y′(0)=-2,将其代入y=ex(c1cos2x+c2sin2x)得c1=0,c2=-1。故所求曲线方程为y=-exsin2x。

  • 第22题:

    单选题
    曲线y=y(x)经过原点且在原点处的切线与直线2x+y=6平行,而y=y(x)满足方程y″-2y′+5y=0,则此曲线的方程为(  )。
    A

    y=exsin2x

    B

    y=-exsin2x

    C

    y=exsinx

    D

    y=-exsinx


    正确答案: B
    解析:
    所求曲线方程满足方程y″-2y′+5y=0,其特征方程为r2-2r+5=0,解得r1,2=1±2i。故方程y″-2y′+5y=0的通解为y=ex(c1cos2x+c2sin2x)。又因为所求曲线经过原点,且在原点处的切线与直线2x+y=6平行,故y(0)=0,y′(0)=-2,将其代入y=ex(c1cos2x+c2sin2x)得c1=0,c2=-1。故所求曲线方程为y=-exsin2x。

  • 第23题:

    单选题
    函数y=f(x)是由方程xy+2lnx=y4所确定,则曲线y=f(x)在点(1,1)处的切线方程为(  )。
    A

    x-y=0

    B

    x+y=0

    C

    -x-y=0

    D

    -x+y=0


    正确答案: C
    解析:
    xy+2lnx=y4两端对x求导,得y+xy′+2/x=4y3·y′。x=1时,y=1,y′(1)=1,则切线方程为y-1=x-1,即x-y=0。