曲线y=2+lnx在点x=1处的切线方程是()A、y=x-1B、y=x+1C、y=xD、y=-x

题目
曲线y=2+lnx在点x=1处的切线方程是()

A、y=x-1

B、y=x+1

C、y=x

D、y=-x


相似考题
更多“曲线y=2+lnx在点x=1处的切线方程是() ”相关问题
  • 第1题:

    已知曲线y=x3-3x2-1,过点(1,-3)作其切线,求切线方程。


    正确答案:

    y′=3x2-6x,当x=1时,y=1-3-1=-3,即点(1,-3)在曲线上。可知此切线的斜率为k=3×12-6×1=-3,由点斜式可知,此切线的方程为y-(-3)=-3(x-1)即为y=-3x。

  • 第2题:

    曲线y=2x2在点(1,2)处的切线方程y=______.


    答案:
    解析:

  • 第3题:

    曲线sin(xy)+ln(y-x)=x在点(0,1)处的切线方程是________.


    答案:1、y=x+1.
    解析:
    先求曲线sin(xy)+ln(y-x)=x在点(0,1)处切线斜率y'(0).等式sin(xy)+ln(y-x)=x两端对x求导得

    在上式中令x=0,y=1得y'(0)=1,于是该曲线在点(0,1)处的切线方程为y-1=x,即y=x+1.

  • 第4题:

    曲线x2+y2=2x在点(1,1)处的切线方程为.


    答案:
    解析:
    【答案】y=1【考情点拨】本题考查了曲线上一点处的切线方程的知识点.
    【应试指导】由x2+y2=2x,两边对x求导得2x+

  • 第5题:

    曲线y=x3-x在点(1,0)处的切线方程y=______.


    答案:
    解析:
    填2(x-1).因为y'=3x2-1,y'(1)=2,则切线方程为y=2(x-1).