更多“ 利用矩阵的初等变换,求方阵的逆”相关问题
  • 第1题:

    初等矩阵( )

    A.都可以经过初等变换化为单位矩阵
    B.所对应的行列式的值都等于1
    C.相乘仍为初等矩阵
    D.相加仍为初等矩阵

    答案:A
    解析:

  • 第2题:

    N阶矩阵A经过若干次初等变换化为矩阵B,则().

    A.|A|=|B|
    B.|A|≠|B|
    C.若|A|=0则|B|=0
    D.若|A|>0则|B|>0

    答案:C
    解析:

  • 第3题:

    已知,求作可s逆矩阵P,使得是对角矩阵。


    答案:
    解析:

  • 第4题:

    设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.
      (1)证明B可逆;
      (2)求AB^-1.


    答案:
    解析:

  • 第5题:

    设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B, (1)证明B可逆; (2)求.


    答案:
    解析:

  • 第6题:

    利用逆矩阵解矩阵方程


    答案:
    解析:

  • 第7题:

    设A为n阶方阵,B是A经过若干次矩阵的初等变换后所得到的矩阵,则有( ).《》( )


    答案:C
    解析:

  • 第8题:

    det()用于矩阵求逆。


    正确答案:错误

  • 第9题:

    设A为4阶魔术矩阵,分别对A进行如下操作: 求矩阵A的逆; 求矩阵A的行列式; 求矩阵A的秩; 求矩阵A的迹;


    正确答案: >>A=magic(4)
    >>B=inv(A)
    >>C=det(A)
    >>D=rank(A)
    >>E=trace(A)

  • 第10题:

    判断题
    det()用于矩阵求逆。
    A

    B


    正确答案:
    解析: 暂无解析

  • 第11题:

    单选题
    设A为n阶方阵,B是A经过若干次矩阵的初等变换后所得到的矩阵,则有(  )。
    A

    |A|=|B|

    B

    |A|≠|B|

    C

    若|A|=0,则一定有|B|=0

    D

    若|A|>0,则一定有|B|>0


    正确答案: A
    解析:
    矩阵A经过若干次初等变换后得到矩阵B,则存在可逆矩阵P,Q使得B=PAQ,因此|B|=|PAQ|=|P|·|A|·|Q|,若|A|=0,则必有|B|=|P|·|A|·|Q|=0成立。

  • 第12题:

    填空题
    求可逆矩阵A的逆矩阵的指令是()

    正确答案: inv(A)
    解析: 暂无解析

  • 第13题:

    设a为N阶可逆矩阵,则( ).

    A.若AB=CB,则a=C
    B.
    C.A总可以经过初等变换化为单位矩阵E
    D.以上都不对


    答案:C
    解析:

  • 第14题:

    设矩阵(a,b,c,d均为实数)(1)计算;(2)利用(1)的结果,求detM.


    答案:
    解析:

  • 第15题:

    ,用初等行变换的方法求A的逆矩阵.然后据此将A分解成初等矩阵的乘积.


    答案:
    解析:

  • 第16题:

    求下面分块矩阵的逆矩阵:


    答案:
    解析:

  • 第17题:

    设A为三阶方阵,A*为矩阵A的伴随矩阵,,请计算


    答案:
    解析:

  • 第18题:

    利用逆矩阵,解线性方程组


    答案:
    解析:

  • 第19题:

    矩阵A在( )时秩改变.

    A.转置
    B.初等变换
    C.乘以奇异矩阵
    D.乘以非奇异矩阵

    答案:C
    解析:

  • 第20题:

    求可逆矩阵A的逆矩阵的指令是()


    正确答案:inv(A)

  • 第21题:

    问答题
    设A为4阶魔术矩阵,分别对A进行如下操作: 求矩阵A的逆; 求矩阵A的行列式; 求矩阵A的秩; 求矩阵A的迹;

    正确答案: >>A=magic(4)
    >>B=inv(A)
    >>C=det(A)
    >>D=rank(A)
    >>E=trace(A)
    解析: 暂无解析

  • 第22题:

    问答题
    设A是n阶方阵,AAT=E,|A|<0,求|A+E|,其中AT是A的转置矩阵。

    正确答案:
    因为AAT=E,所以,A+E,=,A+AAT,=,A(E+AT),=,A,·,E+AT,=,A,·,E+A,,整理得,,A+E,(1-,A,)=0。由,A,<0,知1-,A,≠0,故,A+E,=0。
    解析: 暂无解析

  • 第23题:

    单选题
    矩阵A在(  )时秩改变。
    A

    转置

    B

    初等变换

    C

    乘以奇异矩阵

    D

    乘以非奇异矩阵


    正确答案: B
    解析:
    A项,对矩阵转置不改变矩阵的秩,即r(A)=r(AT);
    B项,初等变换不该变矩阵的秩;
    D项,乘以非奇异矩阵相当于对A进行若干次初等变换,不改变矩阵的秩。