更多“曲面xyz=1上平行于x+y+z+3=0的切平面方程是: ”相关问题
  • 第1题:

    设平面方程:x + y + z-1 = 0,直线的方程是1-x = y + 1=z,则直线与平面:
    A.平行 B.垂直 C.重合 D.相交但不垂直


    答案:D
    解析:

  • 第2题:

    曲面z=1-x2-y2在点(1/2,1/2,1/2)处的切平面方程是:
    A.x+y+z-3/2=0
    B.x-y-z+3/2=0
    C.x-y+z-3/2=0
    D.x-y+z+3/2=0


    答案:A
    解析:
    提示:F(x,y,z)=x2+y2+z-1

  • 第3题:

    曲面 与平面 平行的切平面的方程是


    答案:
    解析:

  • 第4题:

    设直线L过A(1,0,0),B(0,1,1)两点,将L绕z轴旋转一周得到曲面∑,∑与平面z=0,z=2所围成的立体为Ω.
      (Ⅰ)求曲面∑的方程;
      (Ⅱ)求Ω的形心坐标.


    答案:
    解析:
    【分析】利用定义求旋转曲面∑的方程;利用三重积分求Ω的形心坐标.

  • 第5题:

    求曲面x2+2y2+3z2=21的切平面,使它平行于平面x+4y+6z=0。


    答案:
    解析:

  • 第6题:

    过点Mo(1,-1,0)且与平面x-y+3z=1平行的平面方程为_______.


    答案:
    解析:
    由于已知平面的法线向量所求平面与已知平面平行,可取所求平面法线向量又平面过点Mo(1,-1,0),由平面的点法式方程可知,所求平面为【评析】上述两种形式都正确.前者为平面的点法式方程;后者为平面的一般式方程.

  • 第7题:

    曲面xyz=1上平行于x+y+z+3=0的切平面方程是:()

    • A、x+y+z=0
    • B、x+y+z=1
    • C、x+y+z=2
    • D、x+y+z=3

    正确答案:D

  • 第8题:

    在空间直角坐标系中,方程x=2表示().

    • A、x轴上的点(2,0,0)
    • B、xOy平面上的直线x=2
    • C、过点(2,0,0)且平行于yOz面的平面
    • D、过点(2,0,0)的任意平面

    正确答案:C

  • 第9题:

    单选题
    下列平面中,平行于且非重合与 坐标面yoz的平面方程是()。
    A

    y+z+1=0

    B

    z+1=0

    C

    y+1=0

    D

    x+1=0


    正确答案: C
    解析:

  • 第10题:

    单选题
    曲面xyz=1上平行于x+y+z+3=0的切平面方程是:()
    A

    x+y+z=0

    B

    x+y+z=1

    C

    x+y+z=2

    D

    x+y+z=3


    正确答案: B
    解析: 暂无解析

  • 第11题:

    填空题
    曲面z-ez+2xy=3在点(1,2,0)处的切平面方程为____。

    正确答案: 4(x-1)+2(y-2)=0
    解析:
    构造函数F(x,y,z)=z-ez+2xy-3,则Fx′=2y,Fy′=2x,Fz′=1-ez。故将点(1,2,0)代入上式,即可得此点处切平面的法线向量为n()=(4,2,0),则切平面方程为4(x-1)+2(y-2)=0。

  • 第12题:

    填空题
    曲面z=x2+y2与平面2x+4y-z=0平行的切平面的方程是____。

    正确答案: 2x+4y-z-5=0
    解析:
    设曲面上有点P0(x0,y0,z0),使得曲面在此点的切平面与平面2x+4y-z=0平行,由曲面方程z=x2+y2得,曲面在P0处的法向量为(-2x0,-2y0,1),它应该与已知平面2x+4y-z=0的法向量n()=(2,4,-1)平行,即-2x0/2=-2y0/4=1/(-1),解得x0=1,y0=2,z0=x02+y02=5,故所求切平面方程为2(x-1)+4(y-2)-(z-5)=0,即2x+4y-z-5=0。

  • 第13题:

    方程表示下述哪种曲面?
    A.单叶双曲面 B.双曲柱面
    C.双曲柱面在平面x=0上投影 D.x=-3平面上双曲线


    答案:D
    解析:
    提示:两曲面联立表示空间一曲线,进一步可断定为在x=-3平面上的双曲线。

  • 第14题:

    求曲面 的平行于平面 的切平面方程


    答案:
    解析:

  • 第15题:

    曲面x^2+cos(xy)+yz+x=0在点(0,1,-1)处的切平面方程为

    A.Ax-y+z=-2
    B.x+y+z=0
    C.x-2y+z=-3
    D.x-y-z=0

    答案:A
    解析:

  • 第16题:

    曲面z=x(1-siny)+y^2(1-sinx)在点(1,0,1)处的切平面方程为________.


    答案:1、2x-y-z=1.
    解析:

  • 第17题:

    试求通过点Mo(一1,0,4),垂直于平面Ⅱ:3x一4y-10=0,且与直线
    平行的平面方程。


    答案:
    解析:
    平面Ⅱ的法向量m=(3-4,1),直线Z的方向向量l=(3,l,2),所以所求平面的法向

  • 第18题:

    过坐标原点且与平面2x-y+z+1=0平行的平面方程为______.


    答案:
    解析:
    已知平面的法线向量n1=(2,-1,1),所求平面与已知平面平行,可设所求平面方程为2x-y+z+D=0,将x=0,y=0,z=0代入上式,可得D=0,因此所求平面方程为2x-y+z=0.

  • 第19题:

    已知曲面z=4-x2-y2上点P处的切平面平行于平面2x+2y+z-1=0,则点P的坐标是().

    • A、(1,-1,2)
    • B、(1,1,2)
    • C、(-1,1,2)
    • D、(-1,-1,2)

    正确答案:B

  • 第20题:

    单选题
    设平面α平行于两直线x/2=y/(-2)=z及2x=y=z,且与曲面z=x2+y2+1相切,则α的方程为(  )。
    A

    4x+2y-z=0

    B

    4x-2y+z+3=0

    C

    16x+8y-16z+11=0

    D

    16x-8y+8z-1=0


    正确答案: B
    解析:
    由平面α平行于两已知直线可得,平面α的法向量为:n=(2,-2,1)×(1,2,2)=-3(2,1,-2)。设切点为(x0,y0,z0),则切点处曲面的法向量为(2x0,2y0,-1),故2/(2x0)=1/(2y0)=(-2)/(-1),由此解得x0=1/2,y0=1/4,从而z0=x02+y02+1=21/16,因此α的方程为:2(x-1/2)+(y-1/4)-2(z-21/16)=0,即16x+8y-16z+11=0。

  • 第21题:

    单选题
    在空间直角坐标系中,方程x=2表示().
    A

    x轴上的点(2,0,0)

    B

    xOy平面上的直线x=2

    C

    过点(2,0,0)且平行于yOz面的平面

    D

    过点(2,0,0)的任意平面


    正确答案: B
    解析: 暂无解析

  • 第22题:

    单选题
    下列平面中,平行于且与yOz坐标面非重合的平面方程是(  )。[2018年真题]
    A

    y+z+1=0

    B

    z+1=0

    C

    y+1=0

    D

    x+1=0


    正确答案: D
    解析:
    D项,平面方程x+1=0化简为x=-1,显然平行yOz坐标面,且不重合。ABC三项,均不平行于yOz坐标面。

  • 第23题:

    单选题
    已知曲面z=4-x2-y2上点P处的切平面平行于平面π:2x+2y+z-1=0,则点P的坐标是(  )。
    A

    (1,-1,2)

    B

    (-1,1,2)

    C

    (1,1,2)

    D

    (-1,-1,2)


    正确答案: D
    解析:
    即求曲面S:F(x,y,z)=0,其中F(x,y,z)=z+x2+y2-4上点P使S在该点处的法向量n与平面π:2x+2y+z-1=0的法向量n0=(2,2,1)平行。S在P(x,y,z)处的法向量n()=(∂F/∂x,∂F/∂y,∂F/∂z)=(2x,2y,1)
    n∥n0⇔n=λn0
    λ为常数,即2x=2λ,2y=2λ,1=λ。即x=1,y=1,又点P(x,y,z)∈S⇒z=4-x2-y2|(x,y)=(1,1=2,求得P(1,1,2)(P不在给定的平面上)。

  • 第24题:

    单选题
    曲面z=x2+y2与平面2x+4y-z=0平行的切平面的方程是(  )。
    A

    2x+4y-z-5=0

    B

    2x+4y-z=0

    C

    2x+4y-z-3=0

    D

    2x+4y-z+5=0


    正确答案: B
    解析:
    设曲面上有点P0(x0,y0,z0),使得曲面在此点的切平面与平面2x+4y-z=0平行,由曲面方程z=x2+y2得,曲面在P0处的法向量为(-2x0,-2y0,1),它应该与已知平面2x+4y-z=0的法向量n()=(2,4,-1)平行,即-2x0/2=-2y0/4=1/(-1),解得x0=1,y0=2,z0=x02+y02=5,故所求切平面方程为2(x-1)+4(y-2)-(z-5)=0,即2x+4y-z-5=0。