更多“设非齐次线性微分方程y′+P(x)y=Q(x)有两个不同的解y1(x),y2(x),C为任意常数,则该方程通解是( )。”相关问题
  • 第1题:

    若y2(x)是线性非齐次方程y'+ P(x)y=Q(x)的解,y1(x)是对应的齐次方程y'+ P(x)y=0的解,则下列函数中哪一个是y'+ P(x)y=Q(x)的解?
    A. y=cy1(x)+y2(x) B. y=y1(x)+c2y2(x)
    C. y=c[y1(x)+y2(x)] D. y=cy1(x)-y2(x)


    答案:A
    解析:
    提示:由一阶线性非齐次方程通解的结构确定,即由对应齐次方程的通解加上非齐次的一特解组成。

  • 第2题:

    设y1(x)、y2(x)是二阶常系数线性微分方程y″+py′+qy=0的两个线性无关的解,则它的通解为______.


    答案:
    解析:
    由二阶线性常系数微分方程解的结构可知所给方程的通解为其中C1,C2为任意常数.

  • 第3题:

    单选题
    若y2(X)是线性非齐次方程y'+p(x)y-q(x)的解,y1(x)是对应的齐次方程y'+p(x)y=0的解,则下列函数也是y'+p(x)y=g(x)的解的是()。
    A

    y=Cy1(x)+y2(x)

    B

    y=y1(x)+Cy2(x)

    C

    y=C[y1(x)+y2(x)]

    D

    y=Cy1(x)-y2(x)


    正确答案: C
    解析: 暂无解析

  • 第4题:

    单选题
    设函数y1(x)、y2(x)、y3(x)线性无关,且都是二阶非齐次线性方程y″+p(x)y′+q(x)y=f(x)的解,又c1与c2为任意常数,则该非齐次线性方程的通解可表示为(  )。
    A

    c1y1+c2y2+y3

    B

    c1y1+c2y2-(c2+c1)y3

    C

    c1y1+c2y2-(1-c1-c2)y3

    D

    c1y1+c2y2+(1-c1-c2)y3


    正确答案: C
    解析:
    由解的结构可知,y1-y3和y2-y3是对应齐次方程y″+p(x)y′+q(x)y=0的解,且二者线性无关,故y″+p(x)y′+q(x)y=0的通解为c1(y1-y3)+c2(y2-y3),其中c1,c2为任意常数。故方程y″+p(x)y′+q(x)y=f(x)的通解为c1(y1-y3)+c2(y2-y3)+y3,即c1y1+c2y2+(1-c1-c2)y3

  • 第5题:

    单选题
    设非齐次线性微分方程y′+P(x)y=Q(x)有两个不同的解y1(x),y2(x),C为任意常数,则该方程的通解是(  )。
    A

    C[y1(x)-y2(x)]

    B

    y1(x)+C[y1(x)-y2(x)]

    C

    C[y1(x)+y2(x)]

    D

    y1(x)+C[y1(x)+y2(x)]


    正确答案: C
    解析:
    由题意可知,y(_)=y1(x)-y2(x)是y′+P(x)y=0的一个解,则y′+P(x)y=0的通解是C[y1(x)-y2(x)]。故所求方程通解为y1(x)+C[y1(x)-y2(x)]

  • 第6题:

    单选题
    已知微分方程y′+p(x)y=q(x)(q(x)≠0)有两个不同的解y1(x),y2(x),C为任意常数,则该微分方程的通解是(  )。[2012年真题]
    A

    y=C(y1-y2

    B

    y=C(y1+y2

    C

    y=y1+C(y1+y2

    D

    y=y1+C(y1-y2


    正确答案: D
    解析:
    所给方程的通解等于其导出组的通解加上该方程对应齐次方程的一个特解,(y1-y2)是导出组的一个解,C(y1-y2)是导出组的通解。

  • 第7题:

    单选题
    若y2(x)是线性非齐次方程y′+P(x)y=Q(x)的解,y(x)是对应的齐次方程y′+P(x)y=0的解,则下列函数中哪一个是y′+P(x)y=Q(x)的解()?
    A

    y=cy1(x)+y2(x)

    B

    y=y1(x)+c2y2(x)

    C

    y=c[y1(x)+y2(x)]

    D

    y=c1y(x)-y2(x)


    正确答案: C
    解析: 由一阶线性非齐次方程通解的结构确定,即由对应齐次方程的通解加上非齐次的一特解组成。

  • 第8题:

    若y2(x)是线性非齐次方程y'+p(x)y=q(x)的解,y1(x)是对应的齐次方程y'+p(x)y=0的解,则下列函数也是y'+p(x)y=q(x) 的解的是( )。
    A.y=Cy1(x)+y2(x) B. y=y1(x)+Cy2(x)
    C.y=C[y1(x)+y2(x)] D.y=Cy1(x)-y2(x)


    答案:A
    解析:
    提示:齐次方程的通解加上非齐次的特解仍是非齐次的解。

  • 第9题:

    若y2(x)是线性非齐次方程y′+P(x)y=Q(x)的解,y(x)是对应的齐次方程y′+P(x)y=0的解,则下列函数中哪一个是y′+P(x)y=Q(x)的解()?

    • A、y=cy1(x)+y2(x)
    • B、y=y1(x)+c2y2(x)
    • C、y=c[y1(x)+y2(x)]
    • D、y=c1y(x)-y2(x)

    正确答案:A

  • 第10题:

    单选题
    (2012)已知微分方程y′+p+(x)y=q(x)[q(x)≠0]有两个不同的特解y1(x),y2(x),则该微分方程的通解是:(c为任意常数)()
    A

    y=c(y1-y2)

    B

    y=c(y1+y2)

    C

    y=y1+c(y1+y2)

    D

    y=y1+c(y1-y2)


    正确答案: D
    解析: 暂无解析

  • 第11题:

    填空题
    设y1=3+x2,y2=3+x2+e-x是某二阶线性非齐次微分方程的两个特解,且相应的齐次方程有一个解为y3=x,则该方程的通解为____。

    正确答案: y=3+x2+c1x+c2e-x
    解析:
    由解的叠加原理可知,y2-y1=ex是原方程对应齐次方程的一个特解,可知该特解与题中给出的y3=x线性无关,则原方程的通解为y=3+x2+c1x+c2ex

  • 第12题:

    单选题
    若y2(x)是线性非齐次方程y′+P(z)y=Q(x)的解,y1(x)是对应的齐次方程y′+P(x)y=0的解,则下列函数中哪一个是y′+P(z)y=Q(x)的解?()
    A

    y=cy1(x)+y2(x)

    B

    y=y1(x)+c2y2(x)

    C

    y=c[y1(x)+y2(x)]

    D

    y=c1y(x)-y2(x)


    正确答案: D
    解析: 暂无解析

  • 第13题:

    单选题
    设函数y1,y2,y3都是线性非齐次方程y″+p(x)y′+q(x)y=f(x)的不相等的特解,则函数y=(1-c1-c2)y1+c1y2+c2y3(  )。(c1,c2为任意常数)
    A

    是所给方程的通解

    B

    不是方程的解

    C

    是所给方程的特解

    D

    可能是方程的通解,但一定不是其特解


    正确答案: C
    解析:
    由于y1,y2,y3都是y″+p(x)y′+q(x)y=f(x)的不相等的特解,则y2-y1,y3-y1是它对应的齐次方程的特解,故y=(1-c1-c2)y1+c1y2+c2y3=y1+c1(y2-y1)+c2(y3-y1)是非齐次方程y″+p(x)y′+q(x)y=f(x)的解,但是,由于无法确定y2-y1与y3-y1是否为线性无关,故不能肯定它是y″+p(x)y′+q(x)y=f(x)的通解。