参考答案和解析
答案:A
解析:
更多“已知函数f(x,y)在点(0,0)的某个邻域内连续,且 ,则”相关问题
  • 第1题:

    设f(x)、f'(x)为已知的连续函数,则微分方程y'+ f'(x)y = f(x)f'(x)的通解是:


    答案:C
    解析:
    提示:对关于y、y'的一阶线性方程求通解。其中P(x)=f'(x)、Q(x)=f(x) * f'(x),

  • 第2题:

    已知函数f(x,y)在点(0,0)的某个邻域内连续,且

    A.点(0,0)不是f(x,y)的极值点
    B.点(0,0)是f(x,y)的极大值点
    C.点(0,0)是f(x,y)的极小值点
    D.根据所给条件无法判断点(0,0)是否为f(x,y)的极值点

    答案:A
    解析:
    由题设,容易推知f(0,0)=0,因此点(0,0)是否为f(x,y)的极值,关键看在点(0,0)的充分小的邻域内f(x,y)是恒大于零、恒小于零还是变号。

  • 第3题:

    如果函数f(x,y)在(0,0)处连续,那么下列命题正确的是


    答案:B
    解析:

    由微分定义知f(x,y)在(0,0)处可微,故应选(B).【评注】1.本题主要考查二元函数连续、偏导数、可微的定义.
    2.可采用举反例排除错误答案.取f(x,y)=|x|+|y|排除(A),f(x,y)=x+y排除(C)、(D).

  • 第4题:

    设f(x)=|x(1-x)|,则( ).《》( )

    A.x=0是f(x)的极值点,但(0,0)不是曲线y=f(x)的拐点
    B.x=0不是f(x)的极值点,但(0,0)是曲线y=f(x)的拐点
    C.x=0是f(x)的极值点,且(0,0)是曲线y=f(x)的拐点
    D.x=0不是f(x)的极值点,(0,0)也不是曲线y=f(x)的拐点

    答案:C
    解析:

  • 第5题:

    设y=f(x)是微分方程y"-2y’+4y=0的一个解,又f(x0)>O,f’(x0)=0,则函数f(x)在点x0().

    • A、取得极大值
    • B、取得极小值
    • C、的某个邻域内单调增加
    • D、的某个邻域内单调减少

    正确答案:A

  • 第6题:

    单选题
    以下关于二元函数的连续性的说法正确是(  )。
    A

    若f(x,y)沿任意直线y=kx在点x=0处连续,则f(x,y)在(0,0)点连续

    B

    若f(x,y)在点(x0,y0)点连续,则f(x0,y)在y0点连续,f(x,y0)在x0点连续

    C

    若f(x,y)在点(x0,y0)点处偏导数fx′(x0,y0)及fy′(x0,y0)存在,则f(x,y)在(x0,y0)处连续

    D

    以上说法都不对


    正确答案: C
    解析:
    根据二元函数f(x,y)在(x0,y0)出连续的定义可知B项正确。

  • 第7题:

    填空题
    设函数f(x)在x=2的某邻域内可导,且f′(x)=ef(x),f(2)=1,则f‴(2)=____。

    正确答案: 2e3
    解析:
    因f′(x)=efx方程两边对x求导,得f″(x)=efx·f′(x)=efx·efx=e2fx,两边再对x求导,得f‴(x)=e2fx·2f′(x)=2e2fx·efx=2e3fx。又f(2)=1,则f‴(2)=2e3f2=2e3

  • 第8题:

    单选题
    设y=f(x)是y″-2y′+4y=0的一个解,若f(x0)>0且f′(x0)=0,则f(x)在点x0处(  )。
    A

    取得极大值

    B

    某邻域内单调递增

    C

    某邻域内单调递减

    D

    取得极小值


    正确答案: D
    解析:
    因为y=f(x)是微分方程y″-2y′+4y=0的一个解,故对于x=x0,有f″(x0)-2f′(x0)+4f(x0)=0。又因为f′(x0)=0,f(x0)>0,可得f″(x0)<0,故函数在x=x0处取极大值。故应选(A)。

  • 第9题:

    单选题
    y=f(x)是方程y″-2y′+4y=0的一个解,若f(x0)>0,f′(x0)=0,则函数f(x)(  )。
    A

    在x0点取得极大值

    B

    在x0的某邻域单调增加

    C

    在x0点取得极小值

    D

    在x0的某邻域单调减少


    正确答案: A
    解析:
    由f′(x0)=0代入y″-2y′+4y=0可得y″(x0)=-4y(x0)<0。又f′(x0)=0,故函数y=f(x)在x0处取得极大值。

  • 第10题:

    单选题
    如果函数f(x)在点x0的某个邻域内恒有|f(x)|≤M(M是正数),则函数f(x)在该邻域内(  )。
    A

    极限存在

    B

    连续

    C

    有界

    D

    不能确定


    正确答案: C
    解析:
    由函数有界的定义可知:设函数f(x)的定义域为D,数集X∈D。如果存在数K1使得f(x)≤K1对任意x∈X都成立则称函数f(x)在X上有上界。故选C项。

  • 第11题:

    设y=f(x)是微分方程y´´-2y´+4y=0的一个解,又f(xo)>0,f´(xo)=0,则函数f(x)在点xo( ).

    A.取得极大值
    B.取得极小值
    C.的某个邻域内单调增加
    D.的某个邻域内单调减少

    答案:A
    解析:

  • 第12题:

    设函数f(x)具有二阶连续导数,且f(x)>0,f'(0)=0,则函数z=f(x)lnf(y)在点(0,0)处取得极小值的一个充分条件是



    A.Af(0)>1,f"(0)>0
    B.f(0)>1,f"(0)<0
    C.f(0)<1,f"(0)>0
    D.f(0)<1,f"(0)<0

    答案:A
    解析:

  • 第13题:

    设函数f(x)具有2阶连续导数,若曲线y=f(x)过点(0,0)且与曲线y=^x在点(1,2)处相切,则=________.


    答案:1、2(ln2-1)
    解析:

  • 第14题:

    若连续函数y=f(x)在x0点不可导,则曲线y=f(x)在(x0,f(x0))点没有切线.


    正确答案:错误

  • 第15题:

    单选题
    设y=f(x)是微分方程y"-2y’+4y=0的一个解,又f(x0)>O,f’(x0)=0,则函数f(x)在点x0().
    A

    取得极大值

    B

    取得极小值

    C

    的某个邻域内单调增加

    D

    的某个邻域内单调减少


    正确答案: C
    解析: 暂无解析

  • 第16题:

    单选题
    设确定了函数y=g(x),则(  )。
    A

    x=0是函数y=g(x)的驻点,且是极大值点

    B

    x=0是函数y=g(x)的驻点,且是极小值点

    C

    x=0不是函数y=g(x)的驻点

    D

    存在x=0的一个小邻域,y=g(x)是单调的


    正确答案: A
    解析:
    g′(x)=dy/dx=(dy/dt)·(dt/dx)。dy/dt=2t/(1+t2),dx/dt=1/(1+t2)。故y′(x)=2t。又x=0时,t=0,g′(x)=0;t<0时,x<0,g′(x)<0,g(x)单调减少;t>0时,x>0,g′(x)>0,g(x)单调增加。故x=0是y=g(x)的驻点,且是极小值点。

  • 第17题:

    单选题
    设y=f(x)满足关系式y″-2y′+4y=0,且f(x0)>0,f′(x0)=0,则f(x)在x0点处(  )。
    A

    取得极大值

    B

    取得极小值

    C

    在x0点某邻域内单调增加

    D

    在x0点某邻域内单调减少


    正确答案: C
    解析:
    由于f(x0)>0,f′(x0)=0,有f″(x0)-2f′(x0)+4f(x0)=f″(x0)+4f(x0)=0,所以有f″(x0)<0,故f(x)在点x0处取得极大值,故应选(A)。

  • 第18题:

    单选题
    设y=f(x)是满足微分方程y″+y′-esinx=0的解,且f′(x0)=0,则f(x)在(  )。
    A

    x0的某个邻域内单调增加

    B

    x0的某个邻域内单调减少

    C

    x0处取得极小值

    D

    x0处取得极大值


    正确答案: B
    解析:
    将f′(x0)=0代入方程得f″(x0)的符号,从而由极值的充分条件得正确选项。
    f(x)满足方程f″(x)+f′(x)-esinx=0,所以有

  • 第19题:

    单选题
    设函数z=f(x,y)的全微分为dz=xdx+ydy,则点(0,0)(  )。
    A

    不是f(x,y)的连续点

    B

    不是f(x,y)的极值点

    C

    是f(x,y)的极大值点

    D

    是f(x,y)的极小值点


    正确答案: D
    解析:
    函数的全微分为dz=xdx+ydy,则∂z/∂x=x,∂z/∂y=y,故∂2z/∂x2|00=1=A,∂2z/∂x∂y|00=0=B,∂2z/∂y2|00=1=C,又∂z/∂x|00=0,∂z/∂y|00=0,则B2-AC=-1<0,A>0。故(0,0)是函数f(x,y)的极小值点。