若D是由x轴、y轴及直线2x+y-2=0所围成的闭区域,则二重积分的值等于(  )A.1 B.2 C.1/2 D.-1

题目
若D是由x轴、y轴及直线2x+y-2=0所围成的闭区域,则二重积分

的值等于(  )

A.1
B.2
C.1/2
D.-1

相似考题
参考答案和解析
答案:A
解析:
原积分表示x轴、y轴及直线2x+y-2=0所围成的闭区域的面积,因此
更多“若D是由x轴、y轴及直线2x+y-2=0所围成的闭区域,则二重积分 ”相关问题
  • 第1题:

    Ω是由曲面z=x2+y2,y=x,y=0,z=1在第一卦限所围成的闭区域,f(x,y,z) 在Ω上连续,则等于:


    答案:C
    解析:
    提示:作出Ω的立体图形,并确定Ω在xOy平面上投影区域:Dxy:x2+y2 = 1,写出在直角坐标系下先z后x最后y的三次积分。

  • 第2题:

    已知D为x轴、y轴和抛物线y=1-x2所围成的在第一象限内的闭区域,则


    答案:C
    解析:
    积分区域D形状如图所示。

    计算得抛物线与x轴、y轴的交点分别为(1,0)、(0,1),从而D={(x,y)|0≤y≤1-x2,x∈[0,1]},则

  • 第3题:

    D域由x轴、x2+y2-2x=0(y≥0)及x+y=2 所围成,f(x,y)是连续函


    答案:B
    解析:
    提示:x2+y2-2x=0,(x-1)2+y2 =1,D由(x-1)2+y2 =1,(y≥0),x+y =2围成,画出

  • 第4题:

    由曲线y=x3,直线x=1,z轴围成的平面有界区域的面积为_________.


    答案:
    解析:
    【答案】
    【考情点拨】本题考查了积分的应用的知识点.

  • 第5题:

    计算二重积分,其中积分区域D是由x=0、x=1、y=0、y=1所围成的闭区域


    答案:
    解析:











  • 第6题:

    请计算,其中D是由y=1/x=2,y=x所围成的闭区域


    答案:
    解析:









  • 第7题:

    设非负函数满足微分方程,当曲线过原点时,其与直线x=1及y=0围成平面区域D的面积为2,求D绕y轴旋转所得旋转体的体积


    答案:
    解析:

  • 第8题:

    过点(0,1)点作曲线的切线,切点为A,又L与x轴交于B点,区域D由与L直线AB及x轴围成,求区域D的面积及D绕x轴旋转一周所得旋转体的体积.


    答案:
    解析:

  • 第9题:

    曲线y=sinx(0≤x≤π/2)与直线x=π/2,y=0围成的平面图形绕x轴旋转产生的旋转体体积是()。


    答案:A
    解析:
    提示:利用旋转体体积公式

  • 第10题:

    设区域D是由直线y=x,x=2,y=1围成的封闭平面图形,



    答案:D
    解析:
    积分区域如右图中阴影部分所示.D可以表示为1≤x≤2,1≤y≤x或1≤y≤2,y≤x≤2.对照所给选项,知应选D.

  • 第11题:

    ,其中区域如图5-3所示,由y=x,y=1与Y轴围成.


    答案:
    解析:
    将所给积分化为二次积分.

  • 第12题:

    计算二重积分

    ,其中D是由直线

    及y=1围
    成的平面区域.


    答案:
    解析:
    所给积分区域D如图5-6所示,如果选择先对y积分后对x积分的二次积分,需要将积分区域划分为几个子区域,如果选择先对x积分后对y积分的二次积分,区域D可以表示为
    0≤y≤1,Y≤x≤y+1,
    因此

    【评析】
    上述分析通常又是选择积分次序问题的常见方法.


  • 第13题:

    若D是由x=0,y=0,x2+y2=1所围成在第一象限的区域,则二重积分



    等于(  )。




    答案:B
    解析:
    采用极坐标法求二重积分,具体计算如下:

  • 第14题:

    D 域由 x 轴,x2 + y2 ? 2x = 0( y ≥ 0)及 x+y=2 所围成, f (x, y)是连续函数,化


    答案:B
    解析:
    解:选 B。
    画积分区域如下图所示,

  • 第15题:

    设D为曲线y=1-x2,直线y=x+1及x轴所围成的平面区域(如图1-3—1所示)·
    ①求平面图形的面积;
    ②求平面图形D绕x轴旋转一周所成旋转体的体积Vx.


    答案:
    解析:

  • 第16题:

    设D是由直线y=1,y=x,y=-x围成的有界区域,计算二重积分


    答案:
    解析:

  • 第17题:

    设f(x,y)为连续函数,且满足,其中D是由x轴、y轴、所围成的闭区域


    答案:
    解析:

  • 第18题:

    请计算二重积分,其中D是由圆周、x轴,y轴所围成的在第一象限内的闭区域


    答案:
    解析:



  • 第19题:

    设D是两个坐标轴和直线x+y=1所围成的三角形区域,则的值为:


    答案:C
    解析:
    提示:画出积分区域D的图形,把二重积分化为二次积分,,计算出最后答案。

  • 第20题:

    D域由x轴、x2+y2-2x=0(y≥0)及x+y=2 所围成,f(x,y)是连续



    答案:B
    解析:
    提示 x2+y2-2x=0,(x-1)2+y2 =1,D由(x-1)2+y2 =1,(y≥0),x+y =2与x

  • 第21题:


    ,其中D是由

    及x轴所围成的平面区域.


    答案:
    解析:
    积分区域D如图5-5所示.若选择先对Y积分后对x积分,区域D可以表示为

    因此

  • 第22题:

    求由曲线y2=(x-1)3和直线x=2所围成的图形绕x轴旋转所得的旋转体的体积.?


    答案:
    解析:

  • 第23题:

    求由曲线y=x2(x≥0),直线y=1及Y轴围成的平面图形的面积·


    答案:
    解析:
    y=x2(x≥0),y=1及y轴围成的平面图形D如图3—1所示.其面积为