更多“若AX=0只有零解,那么AX=b有唯一解。() 此题为判断题(对,错)。”相关问题
  • 第1题:

    设A为m*n矩阵,则有()。

    A、若mn,则有ax=b无穷多解

    B、若mn,则有ax=0非零解,且基础解系含有n-m个线性无关解向量;

    C、若A有n阶子式不为零,则Ax=b有唯一解;

    D、若A有n阶子式不为零,则Ax=0仅有零解。


    参考答案:D

  • 第2题:

    矩阵A是m×n矩阵,齐次线性方程组AX=0只有零解的充要条件是A的列向量线性无关。()

    此题为判断题(对,错)。


    参考答案:正确

  • 第3题:

    若LP问题有最优解,则要么最优解唯一,要么有无穷多最优解。()

    此题为判断题(对,错)。


    正确答案:√

  • 第4题:

    设A是m×n阶矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是( )。

    A.若Ax=0仅有零解,则Ax=b有惟一解
    B.若Ax=0有非零解,则Ax=b有无穷多个解
    C.若Ax=b有无穷多个解,则Ax=0仅有零解
    D.若Ax=b有无穷多个解,则Ax=0有非零解

    答案:D
    解析:

  • 第5题:

    设有齐次线性方程组Ax=0和Bx=0, 其中A,B均为矩阵,现有4个命题:① 若Ax=0的解均是Bx=0的解,则秩(A)秩(B);② 若秩(A)秩(B),则Ax=0的解均是Bx=0的解;③ 若Ax=0与Bx=0同解,则秩(A)=秩(B);④ 若秩(A)=秩(B), 则Ax=0与Bx=0同解,以上命题中正确的是

    A.① ②
    B.① ③
    C.② ④
    D.③ ④

    答案:B
    解析:

  • 第6题:

    设A是m×n阶矩阵,下列命题正确的是().

    A.若方程组AX=0只有零解,则方程组AX=b有唯一解
    B.若方程组AX=0有非零解,则方程组AX=b有无穷多个解
    C.若方程组AX=b无解,则方程组AX=0一定有非零解
    D.若方程组AX=b有无穷多个解,则方程组AX=0一定有非零解

    答案:D
    解析:

  • 第7题:

    设A是m×n矩阵,如果m

    A.Ax=b必有无穷多解

    B.Ax=b必有唯一解

    C.Ax=0必有非零解

    D.Ax=0必有唯一解

    答案:C
    解析:
    根据条件可知,方程组中方程的个数一定小于未知数的个数,所以Ax=0必有非零解。由

  • 第8题:

    设A是m×n矩阵,AX=0是AX=b的导出组,则下列结论正确的是( ).《》( )

    A.若AX=0仅有零解,则AX=b有唯一解
    B.若AX=0有非零解,则AX=b有无穷多解
    C.若AX=b有无穷多解,则AX=0仅有零解
    D.若AX=b有无穷多解,则AX=0有非零解

    答案:D
    解析:
    由方程组AX=0有解,不能判定AX=b是否有解;由AX=b有唯一解,知AX=0只有零解;由AX=b由无穷多解,知AX=0有非零解.

  • 第9题:

    若非齐次线性方程组Ax=b中方程个数少于未知量个数,则下列结论中正确的是()。

    • A、Ax=0仅有零解
    • B、Ax=0必有非零解
    • C、Ax=0一定无解
    • D、Ax=b必有无穷多解

    正确答案:B

  • 第10题:

    单选题
    设A是m×n阶矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是(  )。
    A

    若Ax=0仅有零解,则Ax=b有唯一解

    B

    若Ax=0有非零解,则Ax=b有无穷多个解

    C

    若Ax=b有无穷多个解,则Ax=0仅有零解

    D

    若Ax=b有无穷多个解,则Ax=0有非零解


    正确答案: D
    解析:
    由解的判定定理知,对Ax=b,若有r(A)=r(A(_))=r,则Ax=b一定有解。进一步,若r=n,则Ax=b有唯一解;若r<n,则Ax=b有无穷多解。而对Ax=0一定有解,且设r(A)=r,则若r=n,Ax=0仅有零解;若r<n,Ax=0有非零解。因此,若Ax=b有无穷多解,则必有r(A)=r(A)=r<n,Ax=0有非零解,所以D项成立。但反过来,若r(A)=r=n(或<n),并不能推导出r(A)=r(A(_)),所以Ax=b可能无解,更谈不上有唯一解或无穷多解。

  • 第11题:

    单选题
    n阶矩阵A的伴随矩阵为A*,齐次线性方程组AX=O有两个线性无关的解,则(  ).
    A

    A*X=0的解均是AX=0的解

    B

    AX=0的解均是A*X=O的解

    C

    AX=0与A*X=0无非零公共解

    D

    AX=0与A*X=O仅有2个非零公共解


    正确答案: B
    解析:
    由齐次方程组AX=0有两个线性无关的解向量,知方程组AX=0的基础解系所含解向量的个数为n-r(A)≥2,即r(A)≤n-2<n-1.由矩阵A与其伴随矩阵秩的关系,知r(A*)=0,即A*=0.所以任意n维列向量均是方程组A*X=0的解,故方程组AX=0的解均是A*X=0的解.

  • 第12题:

    单选题
    设A是4×6矩阵,则齐次线性方程组AX=0解的情况是()。
    A

    无解

    B

    只有零解

    C

    有非零解

    D

    不一定


    正确答案: B
    解析: AX=0有非零解的充要条件是R(A)<6,而4×6矩阵的秩R(A)≤4,故AX=0有非零解,故选(C)。

  • 第13题:

    设A为n阶方阵,r(A)n,下列关于齐次线性方程组Ax=0的叙述正确的是()

    A、Ax=0只有零解

    B、Ax=0的基础解系含r(A)个解向量

    C、Ax=0的基础解系含n-r(A)个解向量

    D、Ax=0没有解


    参考答案:C

  • 第14题:

    设A是m×n矩阵,已知Ax=0只有零解,则以下结论正确的是( )

    A.m≥n B.Ax=b(其中b是m维实向量)必有唯一解

    C.r(A)=m D.Ax=0存在基础解系


    正确答案:A

  • 第15题:

    AX=b有无穷多解,那么Ax=0有非零解。()


    参考答案:错误

  • 第16题:

    设有齐次线性方程组Ax=0和Bx=0, 其中A,B均为 矩阵,现有4个命题: ① 若Ax=0的解均是Bx=0的解,则秩(A) 秩(B); ② 若秩(A) 秩(B),则Ax=0的解均是Bx=0的解; ③ 若Ax=0与Bx=0同解,则秩(A)=秩(B); ④ 若秩(A)=秩(B), 则Ax=0与Bx=0同解


    A.① ②
    B.① ③
    C.② ④
    D.③ ④


    答案:B
    解析:

  • 第17题:

    若A是m×n矩阵,且m≠n,则当R(A)=n时,齐次线性方程组AX=0只有零解


    答案:对
    解析:

  • 第18题:

    设有方程组AX=O与BX=0,其中A,B都是m×N阶矩阵,下列四个命题:
      (1)若AX=O的解都是BX=O的解,则r(A)≥r(B)
      (2)若r(A)≥r(B),则AX=0的解都是BX=0的解
      (3)若AX=0与BX=0同解,则r(A)-r(B)
      (4)若r(A)=r(B),则AX=0与BX=0同解
      以上命题正确的是().

    A.(1)(2)
    B.(1)(3)
    C.(2)(4)
    D.(3)(4)

    答案:B
    解析:
    若方程组AX=0的解都是方程组BX=0的解,则n-r(A)≤n-r(B),从而  r(A)≥r(B),(1)为正确的命题;显然(2)不正确;因为同解方程组系数矩阵的秩相等,但
      反之不对,所以(3)是正确的,(4)是错误的,选(B).

  • 第19题:

    若非齐次线性方程组Ax=b中方程个数少于未知量个数,那么( )。
    A. Ax = b必有无穷多解 B.Ax=0必有非零解C.Ax=0仅有零解 D. Ax= 0一定无解


    答案:B
    解析:
    提示:A的秩小于未知量个数。

  • 第20题:

    设有齐次线性方程组Ax=0及Bx=0,其中A、B均为m×n矩阵,现有以下4个命题 ①若Ax=0的解均是Bx=0的解,则rA≥rB; ②若rA≥rB,则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则rA=rB; ④若rA=rB,则Ax=0与Bx=0同解。 以上命题中正确的是()。

    • A、①②
    • B、①③
    • C、②④
    • D、③④

    正确答案:B

  • 第21题:

    设A是4×6矩阵,则齐次线性方程组AX=0解的情况是()。

    • A、无解
    • B、只有零解
    • C、有非零解
    • D、不一定

    正确答案:C

  • 第22题:

    单选题
    n阶矩阵A的伴随矩阵为A*,齐次线性方程组AX(→)=0(→)有两个线性无关的解,则(  )。
    A

    A*X()0()的解均是AX()0()的解

    B

    AX()0()的解均是A*X()0()的解

    C

    AX()0()与A*X()0()无非零公共解

    D

    AX()0()与A*X()0()仅有2个非零公共解


    正确答案: D
    解析:
    由齐次方程组AX()0()有两个线性无关的解向量,知方程组AX()0()的基础解系所含解向量的个数为n-r(A)≥2,即r(A)≤n-2<n-1。由矩阵A与其伴随矩阵秩的关系,知r(A*)=0,即A*=0。所以任意n维列向量均是方程组A*X()0()的解,故方程组AX()0()的解均是A*X()0()的解。

  • 第23题:

    单选题
    设有齐次线性方程组Ax=0及Bx=0,其中A、B均为m×n矩阵,现有以下4个命题 ①若Ax=0的解均是Bx=0的解,则rA≥rB; ②若rA≥rB,则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则rA=rB; ④若rA=rB,则Ax=0与Bx=0同解。 以上命题中正确的是()。
    A

    ①②

    B

    ①③

    C

    ②④

    D

    ③④


    正确答案: B
    解析: 因为①中条件保证了n-r(A)≤n-r(B),所以r(A)≥r(B),而进一步易知③正确,而②、④均不能成立。