更多“已知数列{an}中,a1=2,an+1=(1+an)/(1-an).记数列{an}的前n项的乘积为∏n,则∏2012=____.”相关问题
  • 第1题:

    已知数列{an}的通项公式为an =(4 9) n-1 - (2 3) n-1 (n ∈ N∗ ),则数列{an}( ).

    (A)有最大项,没有最小项.

    (B)有最小项,没有最大项.

    (C)既有最大项又有最小项.

    (D)既没有最大项也没有最小项.


    参考答案C

  • 第2题:

    已知等差数列{an}中,a1=21,Sn是它的前n项之和,S7=S15。
    (1)求Sn;
    (2)这个数列的前多少项之和最大 求出最大值。


    答案:
    解析:
    (1)设等差数列的公差为d,由题意可得:



    (2)Sn=22n-n2=-(n-11)2+121,当n=11时,数列之和最大,最大值为121。

  • 第3题:

    在等比数列中,a1=3,an=96,Sn=189,则公比q=,项数n=。


    答案:
    解析:
    q=2,n=6

  • 第4题:

    已知数列{an}的通项公式为an=2n,数列{bn}的通项公式为bn=3n+2.若数列{an}和{bn}的公共项顺序组成数列{cn},则数列{cn}的前3项之和为( )

    A.248
    B.168
    C.128
    D.19
    E.以上选项均不正确

    答案:B
    解析:

  • 第5题:

    已知一等差数列a1,21,a3,31,…,an,…,若an=516,则该数列前n项的平均数是( )

    A.266 B.258 C.255 D.212

    答案:A
    解析:
    由等差数列的第2项和第4项可求出其公差d==5,则首项a1=21-5=16。又已知an=516,根据等差数列求和公式Sn==平均数×n,可得前n项的平均数为=266。

  • 第6题:

    一个公比为2的等比数列,第n项与前n-1项和的差等于3,则此数列的前4项之和为:



    A.54
    B.45
    C.42
    D.36

    答案:B
    解析:
    设首项为a1,则第n项为a1×2 n-1,前n-1项和为两式相减得到a1 =3,因此数列前四项之和为3×(24-1)=45.

  • 第7题:

    设an=n2-9n-100(n=1,2,3…),则数列{an}中取值最小的项为( )。

    A、第4项
    B、第5项
    C、第6项
    D、第4和第5项

    答案:D
    解析:
    将数列%看做一个一元二次多项式,开口向上在对称轴n=4.5处取得最小值。但是数列中n为正整数,故在其附近找最小值。当n=4时,an=-120;当n=5时,an=-120。故取最小值的项为第4项和第5项。故选D。

  • 第8题:

    (10分)已知数列{an}满足a1=3,an+1= an +2n,
    (1)求{ an }的通项公式an;
    (2)若bn=n an,求数列{bn}的前n项和sn。


    答案:
    解析:

  • 第9题:

    (10分)已知数列{an}的前n项和Sn=2n+1-k(其中k为常数):
    (1)求数列{ an }的通项公式;(4分)
    (2)若a1=2,求数列{n an }的前n项和Tn。(6分)


    答案:
    解析:

  • 第10题:

    已知数列{an}的前n项和是Sn,且2Sn+an=1(n∈N*)。
    (1)求证:数列{an}是等比数列;
    (2)记bn=10+log9an,求{bn}的前n项和Tn的最大值及相应的n值。


    答案:
    解析:


  • 第11题:

    在移动平均中,设移动n年则()。

    • A、当n为偶数时,移动后所得新数列较原数列首尾各缺n∕2项
    • B、当n为奇数时,移动后所得新数列较原数列首尾缺(N-1)∕2项
    • C、当n为偶数时,移动后所得新数列较原数列首尾缺n项
    • D、当n为奇数时,移动后所得新数列较原数列首尾缺n项

    正确答案:A,B

  • 第12题:

    单选题
    数列{an}满足an+1=an+2-an,a1=2,a2=5,则a5为()。
    A

    -3

    B

    -11

    C

    19

    D

    -5


    正确答案: A
    解析: 暂无解析

  • 第13题:

    若数列{xn}满足条件x1=3,xn+1=(x2n+1)/2xn ,则该数列的通项公式xn=____.


    参考答案

  • 第14题:

    已知等差数列前n项和
    (Ⅰ)求这个数列的逋项公式;
    (II)求数列第六项到第十项的和.


    答案:
    解析:

  • 第15题:

    已知数列{an}中,Sn是它的前n项和,并且Sn+1=4an+2,a1=1.
    (Ⅰ)设bn=an+1-2an,求证:数列{bn)是等比数列;
    (Ⅱ)设求证:数列{cn}是等差数列;
    (Ⅲ)求数列{an}的通项公式及前n项和.


    答案:
    解析:



  • 第16题:

    —个公比为2的等比数列,第n项与前n-1项和的差等于5,则此数列前4项之和为:

    A.70
    B.85
    C.80
    D.75

    答案:D
    解析:

  • 第17题:

    在数列{an}(n=1,2,…)中,a1=1959,a2=1995,且从第三项起,每项是它前两项平均的整数部分,则

    A. 1980
    B.1981
    C.1983
    D.1982

    答案:D
    解析:
    计算数列前面几项,注意题中关键词--“前两项平均的整数部分”。1959,1995,1977,1986,1981,1983,1982,1982…,可见数列从第七项开始都是1982,故此题所求为1982。

  • 第18题:

    已知{an}是由非负整数组成的无穷数列,该数列前n项的最大值记为A。第项之后各
    (1)若是一个周期为4的数列(即对任意写出dl,dz,d3,d0的值;
    (2)设d为非负整数,证明:do=一d(n=1,2,3…)的充分必要条件为{an}为公差为d的等差数列:
    (3)证明:若a1=2,dn=1(n=1,2,3,…),则{an}的项只能是1或者2,且有无穷多项为l。


    答案:
    解析:

  • 第19题:

    已知数列{%}的前n项和是
    (1)求证:数列{an}是等比数列:
    (2)记的前n项和Tn的最大值及相应的n值。


    答案:
    解析:

  • 第20题:

    已知数列{an}满足a1=2,an+1=3an+2(n∈N*),
    (1)求数列{an}的通项公式;



    答案:
    解析:

  • 第21题:

    在等差数列{an)中,已知a1=2,且a2+a4=20,若an=18,则n=5。 ( )


    答案:对
    解析:

  • 第22题:

    数列{an}满足an+1=an+2-an,a1=2,a2=5,则a5为()。

    • A、-3
    • B、-11
    • C、19
    • D、-5

    正确答案:C

  • 第23题:

    单选题
    已知数列{an}满足an+1=an+2,且a1=1,那么它的通项公式an等于(  ).
    A

    2n-1

    B

    2n+1

    C

    2n-2

    D

    2n+2


    正确答案: D
    解析:
    由an+1=an+2可得an+1-an=2,知数列{an}为等差数列,且公差d=2,故通项公式为:an=1+(n-1)×2=2n-1.