更多“已知数列{an}的前n项和Sn=n2-2n.求(I){an}的前三项;(II){an}的通项公式.”相关问题
  • 第1题:

    若数列{xn}满足条件x1=3,xn+1=(x2n+1)/2xn ,则该数列的通项公式xn=____.


    参考答案

  • 第2题:

    已知等差数列{an}中,a1=21,Sn是它的前n项之和,S7=S15。
    (1)求Sn;
    (2)这个数列的前多少项之和最大 求出最大值。


    答案:
    解析:
    (1)设等差数列的公差为d,由题意可得:



    (2)Sn=22n-n2=-(n-11)2+121,当n=11时,数列之和最大,最大值为121。

  • 第3题:

    已知等比数列{an}的各项都是正数,且a1+a3=10,a2+a3=6.
    (I)求{an}的通项公式;
    (II)求{an)的前5项和.


    答案:
    解析:

  • 第4题:

    已知一个等差数列的第五项等于10,前三项的和等于3,那么这个等差数列的公差为( )

    A.3
    B.1
    C.-1
    D.-3

    答案:A
    解析:

  • 第5题:

    已知数列{an}的通项公式为an=2n,数列{bn}的通项公式为bn=3n+2.若数列{an}和{bn}的公共项顺序组成数列{cn},则数列{cn}的前3项之和为( )

    A.248
    B.168
    C.128
    D.19
    E.以上选项均不正确

    答案:B
    解析:

  • 第6题:

    一个公比为2的等比数列,第n项与前n-1项和的差等于3,则此数列的前4项之和为:



    A.54
    B.45
    C.42
    D.36

    答案:B
    解析:
    设首项为a1,则第n项为a1×2 n-1,前n-1项和为两式相减得到a1 =3,因此数列前四项之和为3×(24-1)=45.

  • 第7题:

    已知数列(1)求证:数列是等差数列:
    (2)求数列的通项公式。


    答案:
    解析:
    (2)数列

  • 第8题:

    (10分)已知数列{an}满足a1=3,an+1= an +2n,
    (1)求{ an }的通项公式an;
    (2)若bn=n an,求数列{bn}的前n项和sn。


    答案:
    解析:

  • 第9题:

    (10分)已知数列{an}的前n项和Sn=2n+1-k(其中k为常数):
    (1)求数列{ an }的通项公式;(4分)
    (2)若a1=2,求数列{n an }的前n项和Tn。(6分)


    答案:
    解析:

  • 第10题:

    数列{an}的前n项和为Sn,若an=1/n(n+1),则S5等于()。

    • A、1
    • B、5/6
    • C、1/6
    • D、1/30

    正确答案:B

  • 第11题:

    单选题
    已知数列{an}满足an+1=an+2,且a1=1,那么它的通项公式an等于(  ).
    A

    2n-1

    B

    2n+1

    C

    2n-2

    D

    2n+2


    正确答案: D
    解析:
    由an+1=an+2可得an+1-an=2,知数列{an}为等差数列,且公差d=2,故通项公式为:an=1+(n-1)×2=2n-1.

  • 第12题:

    单选题
    已知数列{an}是公差为d的等差数列,Sn是其前n项和,且有S9<S8=S7,则下列说法中不正确的是(  )。
    A

    S9<S10

    B

    d<0

    C

    S7与S8均为Sn的最大值

    D

    a8=0


    正确答案: B
    解析:
    由S9<S8,可知a9<0,由S8=S7,可知a8=0,所以d<0,所以B、D两项正确;由d<0可知S9以后所有和都小于S8=S7,所以C项正确,A项错误。

  • 第13题:

    设Sn为等差数列{an}的前n项和,若S3=3,S6=24,则a9= 。


    正确答案:
    15

  • 第14题:

    已知等差数列前n项和
    (Ⅰ)求这个数列的逋项公式;
    (II)求数列第六项到第十项的和.


    答案:
    解析:

  • 第15题:

    已知等比数列{an}的各项都是正数,且a1+a3=10,a2+a3=6.
    (Ⅰ)求{an}的通项公式;
    (Ⅱ)求{an}的前5项和.


    答案:
    解析:
    解:(Ⅰ)设(an)的公比为q,由已知得

  • 第16题:

    已知数列{an}中,Sn是它的前n项和,并且Sn+1=4an+2,a1=1.
    (Ⅰ)设bn=an+1-2an,求证:数列{bn)是等比数列;
    (Ⅱ)设求证:数列{cn}是等差数列;
    (Ⅲ)求数列{an}的通项公式及前n项和.


    答案:
    解析:



  • 第17题:

    —个公比为2的等比数列,第n项与前n-1项和的差等于5,则此数列前4项之和为:

    A.70
    B.85
    C.80
    D.75

    答案:D
    解析:

  • 第18题:

    高中数学《等比数列前n项和》
    一、考题回顾
    题目来源:5月19日 上午 重庆市 面试考题
    试讲题目
    1.题目:等比数列前n项和
    2.内容:



    3.基本要求:
    (1)引导学生应用等比数列前n项和;
    (2)试讲10分钟;
    (3)合理设计板书;
    (4)要有适当的提问互动环节。
    答辩题目
    1.等差数列的前n项和公式是什么?
    2.怎样才能设计好授课板书呢?你能给出几点建议吗?


    答案:
    解析:
    二、考题解析
    【教学过程】
    (一)引入新课
    复习等差数列前n项和公式。提问:等比数列前n项和怎么求呢?有没有相应的公式呢?
    引出课题。
    (二)探索新知


  • 第19题:

    已知数列{%}的前n项和是
    (1)求证:数列{an}是等比数列:
    (2)记的前n项和Tn的最大值及相应的n值。


    答案:
    解析:

  • 第20题:

    已知数列{an}满足a1=2,an+1=3an+2(n∈N*),
    (1)求数列{an}的通项公式;



    答案:
    解析:

  • 第21题:

    已知数列{an}的前n项和是Sn,且2Sn+an=1(n∈N*)。
    (1)求证:数列{an}是等比数列;
    (2)记bn=10+log9an,求{bn}的前n项和Tn的最大值及相应的n值。


    答案:
    解析:


  • 第22题:

    单选题
    一个数列,前两项是1,从第三项开始,每一项都等于前两项之和,称为:()。
    A

    求和数列

    B

    加和数列

    C

    子空间数列

    D

    斐波那契数列


    正确答案: B
    解析: 暂无解析

  • 第23题:

    单选题
    “斐波那契数列”在求通项公式时,没有用到的知识是:()。
    A

    一元二次方程求根公式

    B

    求极限

    C

    等比数列通项公式

    D

    二元一次方程组解法


    正确答案: A
    解析: 暂无解析