设32位浮点数格式如下。以下关于浮点数表示的叙述中,正确的是(请作答此空)。若阶码采用补码表示,为8位(含1位阶符),尾数采用原码表示,为24位(含1位数符),不考虑规格化,阶码的最大值为( )。 A.浮点数的精度取决于尾数M的位数,范围取决于阶码E的位数 B.浮点数的精度取决于阶码E的位数,范围取决于尾数M的位数 C.浮点数的精度和范围都取决于尾数M的位数,与阶码E的位数无关 D.浮点数的精度和范围都取决于阶码E的位数,与尾数M的位数无关

题目
设32位浮点数格式如下。以下关于浮点数表示的叙述中,正确的是(请作答此空)。若阶码采用补码表示,为8位(含1位阶符),尾数采用原码表示,为24位(含1位数符),不考虑规格化,阶码的最大值为( )。

A.浮点数的精度取决于尾数M的位数,范围取决于阶码E的位数
B.浮点数的精度取决于阶码E的位数,范围取决于尾数M的位数
C.浮点数的精度和范围都取决于尾数M的位数,与阶码E的位数无关
D.浮点数的精度和范围都取决于阶码E的位数,与尾数M的位数无关

相似考题
更多“设32位浮点数格式如下。以下关于浮点数表示的叙述中,正确的是(请作答此空)。若阶码采用补码表示,为8位(含1位阶符),尾数采用原码表示,为24位(含1位数符),不考虑规格化,阶码的最大值为( )。 ”相关问题
  • 第1题:

    写出浮点加减运算步骤,并说明为什么要浮点数规格化。

    现有浮点数格式如下:1位阶符,6位阶码,1位数符,8位尾数,请写出浮点数所能表示的范围(只考虑正数值)。


    答案:-263~(1-2-8)×263

    解析:阶码使用移码表示,6位阶码1位阶符,故而能表示的最大值为263,而尾数用补码表示,故而8位尾数可表示的范围为-1~1-2-8。

  • 第2题:

    设浮点数字长16位,其中阶码5位(含1位阶符),以2为底补码表示,尾数11位(含1位数符)补码表示,下列十进制数表示成规格化浮点数为多少?

    设浮点数字长16位,其中阶码5位(含1位阶符),以2为底补码表示,尾数11位(含1位数符)补码表示,下列十位进制数表示成规化浮点数为多少?

    3.5:(1);79/512:(2);-10-4:(3);1010:(4)

    A.不能表示成浮点数

    B.11110 01001111000

    C.10010 01110000000

    D.11101 10111111110


    正确答案:C

  • 第3题:

    计算机中十六位浮点数的表示格式为

    某机器码为1110001010000000,

    若阶码为移码且尾数为反码,则其十进制真值为(7);

    若阶码为移码且尾数为原码,则其十进制真值为(8);

    若阶码为补码且尾数为反码,则其十进制真值为(9);

    若阶码为补码且尾数为原码.则其十进制真值为(10),将其规格化后的机器码为(11)。

    A.0.078125

    B.20

    C.20.969375

    D.1.25


    正确答案:B
    解析:(7)如果阶码为移码,由于阶码是4位二进制整数,设真值为X,根据整数移码定义:[X]移码=23+X(1110)2=(14)10,可求得阶码真值为6。如果尾数为反码,从符号位可判断尾数是正数,根据小数反码定义,正小数的反码就是其自身,可求得尾数的真值为:(0.01010000000)2=(2-1+2-4)=(0.3125)10,根据浮点数定义,该机器码真值为0.3125*26=20。(8)如果阶码为移码,同上,真值为6。如果尾数是原码,从符号位可判断尾数是正数,根据小数原码定义,正小数的原码就是其本身,可求得尾数的真值为0.3125。由此可知该机器码真值也是20。(9)如果阶码为补码,由于阶码是4位二进制整数,从符号位判断为负数,设真值为X,根据负整数定义[X]补码=24+X=(1110)2=(14)10,求得阶码的真值为-2。如果尾数为反码,同(7)一样求出尾数的真值为0.3125。这样,该机器码真值为0.3125*2-2=0.078125。(10)如果阶码是补码,尾数是原码,求出阶码和尾数的真值分别为-2和0.3125,这样该机器码的真值也是0.078125。(11)对浮点数进行规格化处理,规定浮点数的尾数部分用纯小数形式表示,当尾数的值不为0时,其绝对值应大于或等于0.5,用二进制表示为0.1XXX…XX(X为0或1)。对于不符合这一规定的浮点数,可改变阶码的大小并同时用左右移尾数的方法来满足这一规定。显然尾数0.01010000000不合要求,应左移1位,而阶码则应相应地减1,因此规格化处理后的阶码为1101,尾数为010100000000。

  • 第4题:

    下面是机器中浮点数的表示格式:

    设浮点数的基为2。若阶码用补码表示、尾数用原码表示,十进制数-51.875采用上述格式可表示为(7);若阶码用移码表示、尾数用补码表示,该数可表示为(8)。

    A.0110 111001111100

    B.0110 011001111100

    C.0110 001110011111

    D.0101 011001111100


    正确答案:A
    解析:首先将-51.875转换为二进制表示:(-51.875)10=-110011.111=-0.110011111×2110,其中110是阶码,-0.110011111是尾数(绝对值大于0.5)。由于规格化表示格式中阶符和阶码共计4位,本题中阶码大于0,故采用补码时,这4位应该是[110]补=[110]原=0110。而采用原码表示尾数时,向[-0.110011111]原=1110011111后面添零补足12位,得111001111100。

  • 第5题:

    用12位寄存器表示规格化浮点数,左4位为阶码(含1位符号),右8位为尾数(含1尾符),阶码用移码,尾数用补码表示时,(-40)10表示成规定的浮点数是(2)。

    A.

    B.

    C.

    D.


    正确答案:B
    解析:浮点数中尾数最高位的真值为1的浮点数称为规格化浮点数。将浮点数规格化的方法是调整阶码使尾数满足下列关系:尾数为原码表示时,无论正负应满足1/2<|d|1,即小数点后的第一位数一定要为1。正数的尾数应为0.1x…x,负数的尾数应为1.1x…x。尾数用补码表示时,小数最高位应与数符符号位相反。正数应满足1/2d1,即0.1x…x;负数应满足-1/2>d-1,即1.0x…x。(-40)10=-(0.101000)2×2+6,阶码6用移码表示为1110,尾数-0.101000用补码表示为1011000,尾数为8位所以加补一位0,因此选B。

  • 第6题:

    下面是某种计算机的32位短浮点数格式如图1.7

    其中,M为用定点小数表示的尾数的绝对值,占23位;Ms是尾数的符号位,占1位;Ms和M一起表示尾数。E为用定点整数表示的阶码,占8位。若机器表示中取阶码的基数为2,求采用下列五种不同编码方式时,浮点数-123625E-3(隐含基数为10)规格化后的机器码:

    阶码用补码方式、尾数用原码方式时,为(80);

    阶码用补码方式、尾数用反码方式时,为(81);

    阶码用移码方式、尾数用原码方式时,为(82);

    阶码用移码方式、尾数用补码方式时,为(83);

    阶码用移码方式、尾数用反码方式时,为(84);

    A.10000111100001000110000000000000

    B.00000111100001000101111111111111

    C.10000111111110000101111111111111

    D.00000111111110111010000000000000


    正确答案:D

  • 第7题:

    设32位浮点数格式如下。以下关于浮点数表示的叙述中,正确的是( )。若阶码采用补码表示,为8位(含1位阶符),尾数采用原码表示,为24位(含1位数符),不考虑规格化,阶码的最大值为(请作答此空)。

    A.255
    B.256
    C.127
    D.128

    答案:C
    解析:
    本题考察计算机数据的表示。浮点数所能表示的数值范围主要由阶码决定,所表示数值的精度则由尾数决定。八位阶码的最大值为127。

  • 第8题:

    某浮点机字长16位,其中,阶码5位(含1位阶符),采用补码表示,基数为4;尾数儿位(含1位数符),采用补码表示,且为规格化形式,则其可以表示的最小正数是()。


    答案:C
    解析:

  • 第9题:

    某浮点数格式如下:7 位阶码(包含一个符号位),9 位尾数(包含一个符号位)。若阶码用移码、尾数用规格化的补码表示,则浮点数所能表示数的范围是()。


    答案:A
    解析:
    浮点数所能表示的数值范围如下:最大的正数

  • 第10题:

    ()在浮点数的表示中是隐含规定的

    • A、数符
    • B、阶符
    • C、尾数
    • D、阶码
    • E、阶码的底

    正确答案:E

  • 第11题:

    问答题
    设某浮点数格式为:字长12位,阶码6位,用移码表示,尾数6位,用原码表示,阶码在前,尾数(包括数符)在后,则按照该格式:已知X=-25/64,Y=2.875,求数据X、Y的规格化的浮点数形式。

    正确答案: [X]=-0.011001=-0.11001*2-1
    X.的符号:1
    X.的阶码:-1=-00001=(移码)011111
    X.的尾数:11001
    解析: 暂无解析

  • 第12题:

    单选题
    下列关于IEEE 754浮点数格式的叙述中,正确的是(  )。
    A

    尾数和阶码均用原码表示

    B

    尾数用补码表示、阶码用原码表示

    C

    只能表示规格化数

    D

    可以表示规格化数和非规格化数


    正确答案: C
    解析:
    IEEE 754的浮点格式既可以表示规格化数,也可以表示非规格化数,同时,指数部分采用移码表示,尾数部分采用原码表示。

  • 第13题:

    设机器中浮点数的格式如下:

    其中阶码6位,包括1位符号位,尾数10位(含1位数符),浮点数的基为2。阶码用补码表示,尾数用原码表示。对于十进制数-25.8375,当阶码用补码表示、尾数用原码表示时,得到的规格化机器码为(38);当阶码用移码表示、尾数用原码表示时,得到的规格化机器码为(39);当阶码用原码表示,尾数用补码表示时,得到的规格化机器码为(40)。

    A.1001011100111000

    B.1110101100111010

    C.1001011000111010

    D.1001011100111010


    正确答案:A

  • 第14题:

    用8位寄存器表示浮点数,左3位为阶码(含1位符号),右5位为尾数(含1尾符),阶码用移码,尾数用补码表示时,(-3.25)10的浮点数形式是(1)。

    A.

    B.

    C.

    D.


    正确答案:A
    解析:(-3.25)10=-0.1101×2+2,阶码2用移码表示为110,尾数-0.1101用补码表示为10011,所以选A。

  • 第15题:

    某计算机系统中,16位浮点数的表示格式如图6-1所示。其中阶码4位(含1位符号)为定点整数,尾数12位(含1位符号)为定点小数,设一个数机器码为1110001010000000。

    若阶码为移码且尾数为原码,则其十进制数真值为(2);若阶码为补码且尾数为补码,则其十进制数真值规格化后的机器码为(3)。

    A.20

    B.25

    C.0.078125

    D.20.969375


    正确答案:A

  • 第16题:

    计算机中16位浮点数的表示格式如图1所示:

    某机器码为1110001010000000。

    若阶码为移码且尾数为反码,其十进制真值为(8);

    若阶码为移码且尾数为原码,其十进制真值为(9);

    若阶码为补码且尾数为反码,其十进制真值为(10);

    若阶码为补码且尾数为原码,其十进制真值为(11),将其规格化后的机器码为(12)。

    A.0.078125

    B.1.45

    C.20

    D.20.697395


    正确答案:C
    解析:本题考查计算机数据的编码,涉及原码、补码、反码和移码以及浮点数规格化处理。同一个数可以有不同的浮点表示形式,阶码的大小可以用来调节数值中小数点的位置。将数值数据表示成N=M+RE,M被称为N的尾数,E是N的指数或称阶码,而只是该阶码的基数。题中阶码用4位二进制整数1110表示,尾数用12位二进制小数001010000000表示,尾数中含有符号位,其最高位即符号位为0。下面具体解答各个问题。(8)如果阶码为移码,由于阶码是4位二进制整数,设真值为X,根据整数移码定义:[X]移码=23+X=(1110)2=(14)10,可此求得阶码真值为6。如果尾数为反码,从符号为可判断尾数是正数,根据小数反码定义,正小数的反码就是其自身,可求得尾数的真值为:(0.01010000000)2=(2-2+2-4)=(0.3125)10,根据浮点数定义,该机器码真值为0.3125+26=20。(9)如果阶码为移码,同上,真值为6。如果尾数是原码,从符号位可判断尾数是正数,根据小数原码定义,正小数的原码就是其本身,可求得尾数的真值位0.3125。这样该机器码的真值也是20。(10)如果阶码为补码,由于阶码是4位二进制整数,从符号位判断为负数,设真值为X,根据负整数定义[X]补码=24+x=(1110)2=(14)10,求得阶码的真值为-2。如果尾数为反码,同问题(8)一样求出尾数的真值为0.3125。这样,该机器码真值为0.3125*2-2=0.078125。(11)如果阶码是补码,尾数是原码,可分别参照问题(10)和问题(9)求出阶码和尾数的真值分别为-2和0.3125这样该机器码的真值也是0.078125。(12)这是对浮点数进行规格化处理。规定浮点数的尾数部分用纯小数形式表示,当尾数的值不为0时,其绝对值应大于或等于0.5,用二进制表示为0.1xxx…xx(x为0或1)。对于不符合这一规定的浮点数。可采用改变阶码的大小并同时左右移尾数的方法来满足这一规定。显然尾数0.01010000000不符合要求,应左移1位,而阶码则相应地减1,因此规格化处理后的阶码为1101,尾数为010100000000。

  • 第17题:

    计算机中十六位浮点数的表示格式为图1.4

    某机器码为1010001010000000。

    若阶码为移码且尾数为反码,则其真值为(60);

    若阶码为移码且尾数为原码,则其真值为(61);

    若阶码为补码且尾数为反码,则其真值为(62);

    若阶码为补码且尾数为原码,则其真值为(63),将其规格化后的机器码为(64)。

    A.0.00000001012

    B.2010

    C.1.2510

    D.20.96937510


    正确答案:C

  • 第18题:

    设32位浮点数格式如下。以下关于浮点数表示的叙述中,正确的是( )。若阶码采用补码表示,为8位(含1位阶符),尾数采用原码表示,为24位(含1位数符),不考虑规格化,阶码的最大值为( )。

    A.浮点数的精度取决于尾数M的位数,范围取决于阶码E的位数B.浮点数的精度取决于阶码E的位数,范围取决于尾数M的位数C.浮点数的精度和范围都取决于尾数M的位数,与阶码E的位数无关D.浮点数的精度和范围都取决于阶码E的位数,与尾数M的位数无关A.255 B.256 C.127 D.128


    正确答案:A,C

  • 第19题:

    设16位浮点数,其中阶符1位、阶码值6位、数符1位、尾数8位。若阶码用移码表示,尾数用补码表示,则该浮点数所能表示的数值范围是( )。



    答案:B
    解析:

  • 第20题:

    浮点数的一般表示形式为N=2E×F,其中E为阶码,F为尾数。以下关于浮点表示的叙述中,错误的是()。

    A.阶码的长度决定浮点表示的范围,尾数的长度决定浮点表示的精度
    B.工业标准IEEE754浮点数格式中阶码采用移码、尾数采用原码表示
    C.规格化指的是阶码采用移码、尾数采用补码
    D.规格化表示要求将尾数的绝对值限定在区间[0.5,1)

    答案:C
    解析:
    为了提高运算的精度,需要充分地利用尾数的有效数位,通常采取浮点数规格化形式,即规定尾数的最高数位必须是一个有效值,即1/2≤F<1。在尾数用补码表示时,规格化浮点数应满足尾数最高数位与符号位不同,即当1/2≤F<1时,应有0.1××…×形式;当-1≤M<-1/2时,应有1.0××…×形式。需要注意的是,当M=-1/2时,对于原码来说是规格化数,而对于补码来说不是规格化数。

  • 第21题:

    设16位浮点数,其中阶符1位、阶码值6位、数符1位,尾数8位。若阶码用移码表示,尾数用补码表示,则该浮点数所能表示的数值范围是(3) 。


    A.A
    B.B
    C.C
    D.D

    答案:B
    解析:

  • 第22题:

    浮点数的表示精度取决于()的位数

    • A、数符
    • B、阶符
    • C、尾数
    • D、阶码
    • E、阶码的底

    正确答案:C

  • 第23题:

    单选题
    ()在浮点数的表示中是隐含规定的
    A

    数符

    B

    阶符

    C

    尾数

    D

    阶码

    E

    阶码的底


    正确答案: D
    解析: 暂无解析