已知三维列向量a,β满足aTβ,设3阶矩阵A=βaT,则: A. β是A的属于特征值0的特征向量 B. a是A的属于特征值0的特征向量 C. β是A的属于特征值3的特征向量 D. a是A的属于特征值3的特征向量

题目
已知三维列向量a,β满足aTβ,设3阶矩阵A=βaT,则:

A. β是A的属于特征值0的特征向量
B. a是A的属于特征值0的特征向量
C. β是A的属于特征值3的特征向量
D. a是A的属于特征值3的特征向量

相似考题
更多“已知三维列向量a,β满足aTβ,设3阶矩阵A=βaT,则: ”相关问题
  • 第1题:

    设矩阵A,B,C均为n阶矩阵,若AB=C,且B可逆,则( )


    A.矩阵C的行向量组与矩阵A的行向量组等价
    B.矩阵C的列向量组与矩阵A的列向量组等价
    C.矩阵C的行向量组与矩阵B的行向量组等价
    D.矩阵C的行向量组与矩阵B的列向量组等价


    答案:B
    解析:

  • 第2题:

    已知三维列向量αβ满足αTβ=3,设3阶矩阵A=βαT,则:

    A. β是A的属于特征值0的特征向量
    B. α是A的属于特征值0的特征向量
    C. β是A的属于特征值3的特征向量
    D. α是A的属于特征值3的特征向量

    答案:C
    解析:
    通过矩阵的特征值、特征向量的定义判定。只要满足式子Ax=λx,向量x即为矩阵A对应特征值λ的特征向量。
    再利用题目给出的条件:
    αTβ=3 ①
    A=βαT ②
    将等式②两边均乘β,得辱A*β=βαT*β,变形Aβ=β(αTβ),代入式①得Aβ=β*3,故Aβ=3*β成立。

  • 第3题:

    设A是nxm矩阵,B是mxn矩阵,E是n阶单位阵,若AB=E,证明B的列向量组线性无关。


    答案:
    解析:

  • 第4题:

    设B≠O为三阶矩阵,且矩阵B的每个列向量为方程组的解,则k=_______,|B|=_______.


    答案:1、0
    解析:
    ,因为B的列向量为方程组的解且B≠0,所以AB=0且方程组有非零解,故|A|=0,解得k=1.因为AB=O,所以r(A)+r(B)≤3且r(A)≥1,于是r(B)≤2小于3,故|B|=0.

  • 第5题:

    设矩阵,α1,α2,α3为线性无关的3维列向量组,则向量组Aα1,Aα2,Aα3的秩为_________.


    答案:1、2.
    解析:
    因(Aα1,Aα2,Aα3)=A(α1,α2,α3),又α,α,α是三维线性无关列向量,所以(α1,α2,α3)为三阶可逆矩阵故r(Aα1,Aα2,Aα3)=r(A)=2.

  • 第6题:

    设A,B,C均为n阶矩阵,若AB=C,且B可逆,则



    A.A矩阵C的行向量组与矩阵A的行向量组等价
    B.矩阵C的列向量组与矩阵A的列向量组等价
    C.矩阵C的行向量组与矩阵B的行向量组等价
    D.矩阵C的列向量组与矩阵B的列向量组等价

    答案:B
    解析:
    对矩阵A,C分别按列分块,记A=(α1,α2,…,αn),C=(γ,γ,…,γ).  由AB=C有

      可见

    即C的列向量组可以由A的列向量组线性表出.
      因为B可逆,有CB^-1=A.类似地,A的列向量组也可由C的列向量组线性表出,因此选(B).

  • 第7题:

    若三维列向量α,β满足α^Tβ=2,其中α为α的转置,则矩阵βα^T的非零特征值为_____________.


    答案:
    解析:

  • 第8题:

    设A是3阶方阵,将A的第一-列与第二列交换得B,再把B的第二列加到第三列得C,则满足AQ=C的可逆矩阵Q是()。


    答案:D
    解析:

  • 第9题:

    已知3维列向量α,β满足αTβ=3,设3阶矩阵A=βαT,则()。

    • A、β是A的属于特征值0的特征向量
    • B、α是A的属于特征值0的特征向量
    • C、β是A的属于特征值3的特征向量
    • D、α是A的属于特征值3的特征向量

    正确答案:C

  • 第10题:

    单选题
    已知A为奇数阶实矩阵,设阶数为n,且对于任一n维列向量X,均有XTAX=0,则有(  )。
    A

    |A|>0

    B

    |A|=0

    C

    |A|<0

    D

    以上三种都有可能


    正确答案: D
    解析:
    由于对任一n维列向量X均有XTAX=0,两边转置,有XTATX=0,从而XT(A+AT)X=0。显然有(A+ATT=A+AT,即A+AT为对称矩阵。从而对任一n维列向量X均有:XT(A+AT)X=0,A+AT为实对称矩阵,从而有A+AT=0。即AT=-A,从而A为实反对称矩阵,且A为奇数阶,故|A|=0。

  • 第11题:

    单选题
    设A是n阶矩阵,若|A|=0,则(  )成立.
    A

    A的任一列向量是其余列向量的线性组合

    B

    必有一列向量是其余向量的线性组合

    C

    必有两列元素对应成比例

    D

    必有一列元素全为O


    正确答案: D
    解析:
    由|A|=0,知矩阵A的列向量线性相关,故至少有一列向量是其余列向量的线性组合.

  • 第12题:

    设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知a是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是:
    A. Pa B. P-1

    A C. PTa D.(P-1)Ta

    答案:B
    解析:

  • 第13题:

    设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知α是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是:(A) Pα (B) P-1α (C) PTa (D) P(-1)Ta


    答案:A
    解析:
    解:选A。
    考察了实对称矩阵的特点,将选项分别代入检验可得到答案。

  • 第14题:

    设α,β为三维非零列向量,(α,β)=3,A=αβ^T,则A的特征值为_______.


    答案:1、0
    解析:

  • 第15题:

    设A为二阶矩阵,α1,α2为线性无关的二维列向量,Aα1=0,Aα2=2α1+α2,则A的非零特征值为________.


    答案:1、1.
    解析:

  • 第16题:

    设α,β为三维列向量,矩阵A=αα^T+ββ^T,其中α^T,β^T分别是α,β的转置.证明:
      (Ⅰ)秩r(A)≤2;
      (Ⅱ)若α,β线性相关,则秩r(A)<2.


    答案:
    解析:
    【证明】(Ⅰ)因为α,β为三维列向量,那么αα^T和ββ^T都是三阶矩阵,
    且秩r(αα^T)≤1,r(ββ^T)≤1.
    那么,r(A)=r(αα^T+ββ^T)≤r(αα^T)+r(ββ^T)≤2.
    (Ⅱ)由于α,β线性相关,不妨设α=kβ,于是
    r(A)=r(αα^T+ββ^T)=r((1+k^2)ββ^T)≤r(β)≤1<2.
    【评注】本题考查矩阵秩的性质公式.
    (Ⅰ)中有两个基本知识点:①r(αα^T)≤1和②r(A+B)≤r(A)+r(B).
    (Ⅱ)中有两个基本知识点:①α,β线性相关的几何意义和②r(kA)=r(A),k≠0.
    注意,如果分块矩阵比较熟悉,本题的(Ⅰ)也可如下处理:
    因为

    那么
    从而r(A)≤2.

  • 第17题:

    设α为三维单位列向量,E为三阶单位矩阵,则矩阵E-αα^T的秩为________.


    答案:
    解析:

  • 第18题:

    设A为3阶矩阵,a1,a2为A的分别属于特征值-1,1的特征向量,向量a3满足


    答案:
    解析:

  • 第19题:

    设α,β,γ均为三维列向量,以这三个向量为列构成的3阶方阵记为A,即A=(αβγ)。若α,β,γ所组成的向量组线性相关,则|A|的值是()。

    • A、大于0
    • B、等于0
    • C、大于0
    • D、无法确定

    正确答案:B

  • 第20题:

    单选题
    设α,β,γ均为三维列向量,以这三个向量为列构成的3阶方阵记为A,即A=(αβγ)。若α,β,γ所组成的向量组线性相关,则|A|的值是()。
    A

    大于0

    B

    等于0

    C

    大于0

    D

    无法确定


    正确答案: D
    解析: 暂无解析

  • 第21题:

    单选题
    已知3维列向量α,β满足αTβ=3,设3阶矩阵A=βαT,则()。
    A

    β是A的属于特征值0的特征向量

    B

    α是A的属于特征值0的特征向量

    C

    β是A的属于特征值3的特征向量

    D

    α是A的属于特征值3的特征向量


    正确答案: D
    解析: 暂无解析

  • 第22题:

    单选题
    (2009)设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知α是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是:()
    A

    B

    P-1α

    C

    PTα

    D

    (P-1)Tα


    正确答案: C
    解析: 暂无解析