:有一堆棋子(棋子数大于1),把它们四等分后剩一枚,拿去三份零一枚,将剩下的棋子再四等分后还是剩一枚,再拿去三份零一枚,将剩下的棋子四等分还是剩一枚。原来至少有( )棋子。A.23枚B.37枚C.65枚D.85枚

题目

:有一堆棋子(棋子数大于1),把它们四等分后剩一枚,拿去三份零一枚,将剩下的棋子再四等分后还是剩一枚,再拿去三份零一枚,将剩下的棋子四等分还是剩一枚。原来至少有( )棋子。

A.23枚

B.37枚

C.65枚

D.85枚


相似考题
更多“:有一堆棋子(棋子数大于1),把它们四等分后剩一枚,拿去三份零一枚,将剩下的棋子再四等分后 ”相关问题
  • 第1题:

    今有甲、乙、丙三堆棋子共98枚。先从甲堆中分棋子给另外两堆,使两堆数各增加一倍,再把乙堆棋子照这样分配一次,最后把丙堆棋子也这样分配,结果甲堆棋子数是丙堆棋数的4/5,乙堆棋子数是丙堆棋子数的22/15。求三堆中原来最多一堆的棋子是多少?( )

    A.16

    B.30

    C.52

    D.64


    正确答案:C
    最终结果丙堆的棋子数是:98÷(1+4/5+22/15)=30(枚)
    ,因此,最终结果甲堆棋子数是:30×4/5=24(枚)
    乙堆棋子数是:30×22/15=44(枚)
    倒推到乙堆棋子分配完毕时,甲堆应有棋子24÷2=12(枚),乙堆应有棋子44÷2=22(枚),故丙堆应有棋子98-(12+22)=64(枚)。再倒推到甲堆棋子分配完毕时,甲堆应有棋子12÷2—6(枚),丙堆应有棋子64÷2=32(枚),故乙堆应有棋子98-(6+32)=60(枚)。倒推到开始状态时乙堆应有棋子60÷2=30(枚)棋子,丙堆应有32÷2=16(枚)棋子,故甲堆应有98一(30+16)一52(枚)棋子。故三堆中原来棋子最多的是甲堆,它有棋子52枚。因此,本题正确答案为C。

  • 第2题:

    有一堆棋子(棋子数大于1),把它们四等分后剩一枚,拿去三份零一枚,将剩下的棋子再四等分后还是剩一枚,再拿去三份零一枚,将剩下的棋子四等分还是剩一枚。问原来至少有多少枚棋子?( )

    A.23
    B.37
    C.65
    D.85

    答案:D
    解析:
    代入排除法。四等分后剩一枚,排除A;拿去三份零一枚,B项剩9枚、C项剩16枚、D项剩21枚,四等分还剩一枚,排除C;再拿去三份零一枚,B项剩2枚、D项剩5枚,只有D项符合。

  • 第3题:

    把40枚棋子分成27堆,其中每堆中的棋子数为1、2或3。如果只有1枚棋子的堆数是其余堆数的2倍,那么恰含2枚棋子的有多少堆?

    A.4
    B.5
    C.6
    D.7

    答案:B
    解析:
    只有1枚棋子的有27×2÷(2+1)=18堆,剩余棋子40-18=22枚、27-18=9堆,则恰含2枚棋子的有(9×3-22)÷(3-2)=5堆,应选择B。

  • 第4题:

    有一堆棋子(棋子数大于1),把它们四等分后剩一枚,拿去三份零一枚,将剩下的棋子再四等分后还是剩一枚,再拿去三份零一枚,将剩下的棋子四等分还是剩一枚。问原来至少多少枚棋子?( )

    A.23

    B.37

    C.65

    D.85


    正确答案:D
    【答案】D。解析:可采用代入法:四个选项只有85符合题意,即(85-1)÷4=21,(21-1)÷4=5,(5-1)÷4=1;或者采用倒推法,剩下四等分还剩1枚,那么每等分至少应该是1,即最后剩下的棋子至少应该是4×1+1=5,依次倒推回去,也可得到正确的答案为85。

  • 第5题:

    有一堆棋子(棋子数大于1),把它们四等分后剩一枚,拿去三份零一枚,将剩下的棋子再四等分后还是剩一枚,再拿去三份零一枚,将剩下的棋子四等分还是剩一枚。问原来至少多少枚棋子?(  )

    A.23
    B.37
    C.65
    D.85

    答案:D
    解析:
    从最后一次倒推,最后一次四等分时至少有1×4+1=5(枚);第二次四等分时有5×4+1=21(枚);第一次四等分时有21×4+1=85(枚),选D。