已知某完全垄断企业的需求函数为P=17-4Q,成本函数为TC=5Q+2Q2。 (1)计算企业利润最大化的价格和产出、利润。 (2)如果政府实行价格管制,按边际成本定价与按平均成本定价,价格分别是多少?厂商是否亏损?

题目
已知某完全垄断企业的需求函数为P=17-4Q,成本函数为TC=5Q+2Q2。 (1)计算企业利润最大化的价格和产出、利润。 (2)如果政府实行价格管制,按边际成本定价与按平均成本定价,价格分别是多少?厂商是否亏损?

相似考题
参考答案和解析
(1)当MR=MC 时获得最大利润  即   17-8=5+4Q
所以Q=1;   P=13   π=TR-TC=PQ-TC=13×1-(5×1+2×12)=6
(2) MC==5+4Q  AC=5+2Q  当P=AC 17-40=5+2Q    Q=2  P=5+2Q=4+4=9
则:TC=10+8=18   TR=PQ=9×2=18     所以盈亏持平。
当P=MC  17-4Q=5+4Q  Q=1.5 P=5+4Q=11  TC=5Q+2Q2=7.5+4.5=12
TR=PQ=11×1.5=16.5    所以盈利。
更多“已知某完全垄断企业的需求函数为P=17-4Q,成本函数为TC=5Q+2Q<sup>2</sup>。 (1)计算企业利润最大化的价格和产出、利润。 (2)如果政府实行价格管制,按边际成本定价与按平均成本定价,价格分别是多少?厂商是否亏损?”相关问题
  • 第1题:

    假定一个垄断者的产品需求曲线为P=10-3Q,成本函数为TC=Q2+2Q,求垄断企业利润最大时的产量、价格和利润。


    参考答案:

    TR=P·Q=10Q-3Q2,
    则MR=10-6Q,由TC=Q2+2Q,得,MC=2Q+2当MR=MC时,
    垄断企业利润最大,即10-6Q=2Q+2,得,Q=1P=10-3×1=7;π=TR-TC=7×1-12-2×1=4


  • 第2题:

    已知Q=6750 - 50P,总成本函数为TC=12000+0.025Q2 。求(1)利润最大的产量和价格?(2)最大利润是多少?


    参考答案:(1)因为:TC=12000+0.025Q2  ,所以MC = 0.05 Q     又因为:Q=6750 – 50P,所以TR=P·Q=135Q - (1/50)Q2            MR=135- (1/25)Q      因为利润最大化原则是MR=MC     所以0.05 Q=135- (1/25)Q     Q=1500          P=105 
    (2)最大利润=TR-TC=89250

  • 第3题:

    一个垄断企业的成本函数是C(Y)=Y2,这个企业面临的反需求函数是 P(Y)=120-Y

    (1)这个企业利润最大化的最佳产出是多少?

    (2)如果政府对这个企业征收100元的税收,这个企业的产出有什么变化?

    (3)如果政府对这个企业的产品征收每单位20元的从量税,这个企业利润最大化时的产出和价格各是多少?


    正确答案:

    (1).由于MR=120-2Y,MC=2Y,而垄断企业的利润最大化产出满足边际收入等于边际成本,即120-2Y=2Y,得到Y=30,P-90, =1800

      (2) 总税额不影响产出,这个企业的产出没变化。

     (3)相当于边际成本增加了20,即120-2Y=2Y+20,得Y=2 5,消费者购买的价格为95.

  • 第4题:

    垄断厂商生产某一产品,产品的成本函数为C(q)=q2,市场反需求函数为p=120-q。试求:(1)垄断厂商利润最大化的产量和价格,并画图说明。(2)政府对垄断厂商征收100元的税收后,垄断厂商的产量和价格。(3)政府对垄断厂商单位产品征收从量税2元,垄断厂商的产量和价格。


    答案:
    解析:
    (1)垄断厂商的边际成本函数为MC= 2q,边际收益函数为MR =120 - 2q,根据垄断 厂商利润最大化原则MR =MC,可以解得垄断厂商利润最大化的产量和价格分别为q*一30、 p* =90。如图1 2所示,厂商在MR曲线和MC曲线的交点处确定利润最大化的产量q* =30, 再根据q’对应的市场需求曲线D上的点确定产品的价格p* =90。

    (2)当政府对垄断厂商征收100元税收后,垄断厂商的实际成本函数变为: C(q) =q2+100 但垄断厂商的边际成本函数仍为MC=2q,因而利润最大化的条件不变,因此垄断厂商利润最大 化的产量和价格仍然为q+ =30、p* =90。 (3)当政府对垄断厂商单位产品征收从量税2元后,垄断厂商的实际成本函数变为C(q)一qz+ 2q,边际成本函数则为MC=2q+2,边际收益函数仍为MR =120-2q,根据垄断厂商利润最大 化原则MR =MC,可以解得垄断厂商利润最大化的产量和价格分别为g’=29.5,p* =90.5。

  • 第5题:

    假定某垄断厂商生产一种产品,其总成本函数为TC=0.SQ2 +10Q +5,市场的反需求函数为P=70 -2Q: (1)求该厂商实现利润最大化时的产量、产品价格和利润量。 (2)如果要求该垄断厂商遵从完全竞争原则,那么,该厂商实现利润最大化时的产量、产品价格和利润量又是多少? (3)试比较(1)和(2)的结果,你可以得出什么结论?


    答案:
    解析:
    (1)厂商边际成本函数为MC=Q+10, 边际收益函数为MR =70 -4Q。 根据利润最大化原则MR =MC, 可知Q =12,P=46,利润π=PQ - TC= 355。 (2)根据完全竞争原则可知P=MC, 可得Q =20,P=30, 此时利润π= PQ - TC= 195。 (3)比较(1)和(2)可知,垄断条件下的利润更大,价格更高,但产量却比较低。

  • 第6题:

    已知某垄断厂商的反需求函数为P= 100 - 2Q +2

    成本函数为TC =3Q2 +20Q +A,其中,A表示厂商的广告支出。求:该厂商实现利润最大化时Q、P和A的值。


    答案:
    解析:
    由题意可得: π=P·Q- TC

  • 第7题:

    假设某完全竞争行业有200个相同的企业,企业的短期成本函数为TC =0. 2Q2+Q+15,市场需求函数为Qp= 2475 - 95P,厂商的长期总成本函数为LTC=0.1Q3-1. 2Q2+11.1Q,求: (1)市场短期均衡价格、产量及厂商利润。 (2)市场长期均衡价格与产量。 (3)说明是否会有厂商退出经营。


    答案:
    解析:
    (1)先求单个企业的供给函数:

    故A VC的最小值为1。 而MC的最小值也为1,故只有价格大于等于1,厂商才会供给商品。 此时单个企业的供给函数为P= MC =0.4Q +l,即Q=2.SP -2.5。 市场的供给函数为Qs=200Q =500P -500(P≥1),由QD=QS可得P=5。 市场均衡产量为2000单位,每个厂商产量为10单位。 单个厂商利润为5 x10 - (0.2 x102 +10+15) =5。

    将Q=6代入LAC,得IAC =7.5。 由长期均衡条件可得P=7. 5. (3)将P=7.5代入需求函数可得市场需求量为1762.5,而200个厂商的供给量为1200,再加上厂商短期利润为正,长期利润为O,所以没有厂商退出经营。

  • 第8题:

    完全竞争市场中某厂商的短期成本函数为 ,若产品售价为82,请 计算: (1)利润最大化时的产量和利润。 (2)若市场条件发生变化,均衡价格下降到19,此时厂商是否会亏损?若亏损,其最小亏损额是多少? (3)在上述问题(2)中,厂商是否会停产,为什么?


    答案:
    解析:
    (1)厂商的利润函数为π=PQ- STC= 82Q- (Q3—3Q2+10Q+200),利润最大化的一阶条件为:

    此时的利润为丌=124。 (2)将P=19代入(1)的利润函数,同理可以解得厂商如果生产,则产量为Q=3,利润为丌 - -173。厂商会亏损,最小的亏损额为173。 (3)此时,厂商不会停产。因为此时的固定成本为200,而经济利润为-173> - 200,继续生产仍然比停产有利。

  • 第9题:

    已知某厂商的需求函数为Q=6750-50P,总成本函数为TC=12000+0.025Q2。求: (1)利润最大化时的产量和价格; (2)最大利润是多少?


    正确答案:(1)由Q=6752-50P,则P=135-1/50Q,Л=TR-TC=PQ-TC=(135-1/50Q)Q-12000-0.0025Q2,当利润最大化时Л=135-1/25Q+0.05Q=0,解得Q=1500,P=105
    (2)最大利润Л=TR-TC=PQ-TC=89250

  • 第10题:

    问答题
    已知某厂商的需求函数为Q=6750-50P,总成本函数为TC=12000+0.025Q2。求: (1)利润最大化时的产量和价格; (2)最大利润是多少?

    正确答案: (1)由Q=6752-50P,则P=135-1/50Q,Л=TR-TC=PQ-TC=(135-1/50Q)Q-12000-0.0025Q2,当利润最大化时Л=135-1/25Q+0.05Q=0,解得Q=1500,P=105
    (2)最大利润Л=TR-TC=PQ-TC=89250
    解析: 暂无解析

  • 第11题:

    问答题
    已知某厂商的生产函数为Q=0.5L1/3K2/3;当资本投入量K=50时资本的总价值为500;劳动的价格PL=5。求:  (1)劳动的投入函数L=L(Q);  (2)总成本函数、平均成本函数和边际成本函数;  (3)当产品的价格P=100时,厂商获得最大利润的产量和利润各是多少?

    正确答案: (1)因为K=50,则Q=0.5L1/3K2/3=0.5L1/3502/3,L=0.0032Q3,此即为劳动的投入函数。
    (2)总成本函数为:TC=PLL+PKK=0.016Q3+500
    平均成本函数为:ATC=TC/Q=0.016Q2+500/Q
    边际成本函数为:MC=dTC/dQ=0.048Q2
    (3)当产品的价格P=100时,厂商的边际收益MR=P=100,由厂商获得最大利润的条件MR=MC,即100=0.048Q2,解得Q≈45.64。
    此时利润:π=PQ-TC=100×45.64-0.016×45.643-500≈2543。
    解析: 暂无解析

  • 第12题:

    问答题
    已知垄断厂商面临的需求曲线是Q=50-3P。  (1)求厂商的边际收益函数。  (2)若厂商的边际成本等于4,求厂商利润最大化的产量和价格。

    正确答案:
    (1)据题意,垄断厂商的反需求函数为:P=50/3-Q/3,所以,厂商的总收益函数为:
    TR=PQ=50Q/3-Q2/3
    则其边际收益函数为:MR=dTR/dQ=50/3-2Q/3。
    (2)由题可知,厂商的边际成本MC=4。根据厂商利润最大化的一般原则,有:MR=MC,即:
    50/3-2Q/3=4
    解得:Q=19。
    将Q=19代入反需求函数P=50/3-Q/3,得:P=50/3-19/3=31/3。
    即厂商利润最大化的产量为Q=19,价格为P=31/3。
    解析: 暂无解析

  • 第13题:

    已知一垄断企业成本函数为:TC=5Q2 +20Q+1000,产品的需求函数为: Q=140-P,

    求:(1)利润最大化时的产量、价格和利润,

    (2)厂商是否从事生产?


    参考答案:(1)利润最大化的原则是:MR=MC     因为TR=P·Q=[140-Q]·Q=140Q-Q2     所以MR=140-2Q       MC=10Q+20      所以 140-2Q = 10Q+20        Q=10        P=130    
    (2)最大利润=TR-TC= -400    
    (3)因为经济利润-400,出现了亏损,是否生产要看价格与平均变动成本的关系。平均变动成本AVC=VC/Q=(5Q2 +20Q)/Q=5Q+20=70,而价格是130大于平均变动成本,所以尽管出现亏损,但厂商依然从事生产,此时生产比不生产亏损要少。

  • 第14题:

    已知厂商面临的需求曲线是:Q=50-2P。(1)求厂商的边际收益函数。(2)若厂商的边际成本等于4,求厂商利润最大化的产量和价格。


    参考答案:

  • 第15题:

    一位垄断厂商所面临的需求函数为Q=100-(p/2),不变的边际成本是40。如果他不实施价格歧视,他的利润最大化的价格为()

    A.120

    B.60

    C.80

    D.40


    参考答案:D

  • 第16题:

    假定某厂商的需求函数为Q =100-P,平均成本函数为Ac=120/Q+2。 (1)求该厂商实现利润最大化时的产量、价格及利润量。 (2)如果政府对每单位产品征税8元,那么,该厂商实现利润最大化时的产量、价格及利润量又是多少?与(1)中的结果进行比较。


    答案:
    解析:
    (1)总成本函数为TC =120 +2Q, 构造利润函数π= PQ -rc, 即π=(100 -Q)Q- (120 +2Q)=- Q2 +98Q -120, dπ/dQ=-2Q+98=0 此时Q =49,P=51,利润π=2281。 (2)构造利润函数: π= PQ - TC - 8Q=-Q2+ 90Q - 120 dπ/dQ=2Q+90=0 此时Q =45,P=55,利润π=1905。 与(1)比较,(2)中的利润量较低,产量降低但价格上升。

  • 第17题:

    假设一个垄断厂商面临的需求曲线为P =10 -2Q,成本函数为TC= Q2 +4Q。 (1)求利润极大时的产量、价格和利润。 (2)如果政府企图对该厂商采取限价措施迫使其达到完全竞争行业所能达到的产量水平,则限价应为多少?此时该垄断厂商是否仍有利润?


    答案:
    解析:

  • 第18题:

    已知某垄断厂商的短期总成本函数为STC =0. 6Q2+3Q +2,反需求函数为P=8 -0. 4Q: (1)求该厂商实现利润最大化时的产量、价格、收益和利润。 (2)求该厂商实现收益最大化时的产量、价格、收益和利润。 (3)比较(1)和(2)的结果。


    答案:
    解析:

  • 第19题:

    完全竞争行中某厂商的成本函数为TC=Q3-6Q2+30Q+40试求: (1)假设产品价格为66元,利润最大化时的产量及利润总额。 (2)竞争市场供求发生变化,由此决定的新价格为30元,在新价格下,厂商是否会发生亏损?如果会,最小的亏损额为多少? (3)该厂商在什么情况下会停止生产? (4)厂商的短期供给函数。


    答案:
    解析:

  • 第20题:

    一位垄断厂商所面临的需求函数为Q=100-(p/2),不变的边际成本是40。如果他不实施价格歧视,他的利润最大化的价格为()

    • A、120
    • B、60
    • C、80
    • D、40

    正确答案:D

  • 第21题:

    垄断厂商的需求曲线为Q=D(P)=100-2P;成本函数为C(Q)=2Q;则它的利润最大化价格是()


    正确答案:26

  • 第22题:

    问答题
    假设某垄断竞争厂商的产品需求函数为P=9400-4Q,成本函数为TC=4000+3000Q,求该厂商均衡时的产量、价格和利润。

    正确答案: 根据利润最大化原则MR=MC,MR=9400-8Q,MC=3000,得Q=800,P=6200,π=TR-TC=2556000
    解析: 暂无解析

  • 第23题:

    问答题
    某垄断厂商的反需求函数为P=150-3Q,成本函数为TC=15Q+0.5Q2。  (1)计算利润最大化的价格和产出。  (2)如果厂商追求销售收入最大化,其价格和产出又如何?  (3)政府决定价格不准高于40元,该厂商的产量为多少?会造成过剩还是短缺?

    正确答案: (1)根据已知条件,得总收益函数为TR=PQ=150Q-3Q2,边际收益函数为MR=150-6Q;边际成本函数MC=15+Q。根据MR=MC原则,即150-6Q=15+Q,解得Q=19.29,P=92.13。
    (2)如果厂商追求销售收入TR最大化,要求MR=0,即dTR/dQ=150-6Q=0,解得Q=25,P=150-3×25=75。
    (3)如果政府规定价格不许高于40元,当P=40时,Qd≈37。厂商追求利润最大化,边际收益MR=40,由MR=MC可得Qs=25。Qsd,此时会造成短缺。
    解析: 暂无解析