单选题当a<x<b时,有f′(x)>0,f″(x)<0,则在区间(a,b)内,函数y=f(x)的图形沿x轴正向是(  )。[2012年真题]A 单调减且凸的B 单调减且凹的C 单调增且凸的D 单调增且凹的

题目
单选题
当a<x<b时,有f′(x)>0,f″(x)<0,则在区间(a,b)内,函数y=f(x)的图形沿x轴正向是(  )。[2012年真题]
A

单调减且凸的

B

单调减且凹的

C

单调增且凸的

D

单调增且凹的


相似考题
更多“当a<x<b时,有f′(x)>0,f″(x)<0,则在区间(a,b)内,函数y=f(x)的图形沿x轴正向是(  )。[2”相关问题
  • 第1题:

    设函数 f (x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有 f ' (x) >0, f '' (x) >0,
    则在(- ∞ ,0)内必有:
    (A) f ' > 0, f '' > 0 (B) f ' 0
    (C) f ' > 0, f ''


    答案:B
    解析:
    解:选 B。
    偶函数的导数是奇函数,奇函数的导数是偶函数。
    f (x)是偶函数,则 f '(x)是奇函数,当x > 0时, f '(x) > 0,则x f '(x)是奇函数,则 f ''(x)是奇函数,当x > 0时, f '(x) > 0,则x 0;
    点评:偶函数的导数是奇函数,奇函数的导数是偶函数。

  • 第2题:

    若函数f(x,y)在闭区域D上连续,下列关于极值点的陈述中正确的是:
    A.f(x,y)的极值点一定是f(x,y)的驻点
    B.如果P0是f(x,y)的极值点,则P0点处B2-AC
    C.如果P0是可微函数f(x,y)的极值点,则在P0点处df=0
    D.f(x,y)的最大值点一定是f(x,y)的极大值点


    答案:C
    解析:
    提示:在题目中只给出f(x,y)在闭区域D上连续这一条件,并未讲函数f(x,y)在P0点是否具有一阶、二阶偏导,而选项A、B判定中均利用了这个未给的条件,因而选项A、B不成立。选项D中f(x,y)的最大值点可以在D的边界曲线上取得,因而不一定是f(x,y)的极大值点,故选项D不成立。
    在选项C中,给出p0是可微函数的极值点这个条件,因而f(x,y)在P0偏导存在,且

  • 第3题:

    函数f(x)的导函数f'(x)的图像如右图所示,则在(-∞,+∞)内f(x)的单调递增区间是()

    A.(-∞,0)
    B.(-∞,1)
    C.(0,+∞)
    D.(1,+∞)

    答案:B
    解析:
    因为x在(-∞,1)上,f'(x)>0,f(x)单调增加,故选B.

  • 第4题:

    设f(x)为区间[a,b]上的连续函数,则曲线y=f(x)与直线x=a,x=b,y=0所围成的封闭图形的面积为( ).《》( )


    答案:B
    解析:
    本题考查的知识点为定积分的几何意义.由定积分的几何意义可知应选B.常见的错误是选C.如果画个草图,则可以避免这类错误.

  • 第5题:

    设x=a是代数方程f(x)=0的根,则下列结论不正确的是( )。

    A、 叫是f(x)的因式
    B、X-a整除f(x)
    C、(a,0)是函数y=f(x)的图象与2轴的交点
    D、 f(a)=0

    答案:D
    解析:
    由于X,=01是代数方程f(x)-0的根,故有f(a)=o,x一a是f(x)的因式.X-Ot整除f(x),(a,0)f(a)=0,比如f(x)≈x-2。

  • 第6题:

    若f(x)=-f(-x),在(0,+∞)内f′(x)>0,f″(x)>0,则在(-∞,0)内( )《》( )

    A.f′(x)<f″(x)<0
    B.f′(x)<f″(x)>0
    C.f′(x)>f″(x)<0
    D.f′(x)>f″(x)>0

    答案:C
    解析:

  • 第7题:

    填空题
    设函数y=y(x)由方程y=f(x2+y2)+f(x+y)所确定,且y(0)=2,其中f是可导函数,f′(2)=1/2,f′(4)=1,则dy/dx|x=0=____。

    正确答案: -1/7
    解析:
    由方程y=f(x2+y2)+f(x+y)。两边对x求导得yx′=f′(x2+y2)(2x+2y·yx′)+f′(x+y)(1+yx′)。
    又y(0)=2,f′(2)=1/2,f′(4)=1,,故y′|x0=f′(4)·4y′|x0+f′(2)(1+y′|x0),y′|x0=4y′|x0+(1+y′|x0)/2,解得y′|x0=-1/7。

  • 第8题:

    单选题
    当a<x<b时,有f′(x)>0,f″(x)<0,则在区间(a,b)内,函数y=f(x)的图形沿x轴正向是(  )。[2012年真题]
    A

    单调减且凸的

    B

    单调减且凹的

    C

    单调增且凸的

    D

    单调增且凹的


    正确答案: D
    解析:
    由f′(x)>0且f″(x)<0可知,函数y=f(x)的图形沿x轴正向是单调增且凸的。

  • 第9题:

    单选题
    设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)>0,f"(x)>0,则在(-∞,0)内必有()。
    A

    f'(x)>0,f"(x)>0

    B

    f'(x)<0,f"(x)>0

    C

    f'(x)>O,f"(x)<0

    D

    f'(x)<0,f"(x)<0


    正确答案: A
    解析: 暂无解析

  • 第10题:

    单选题
    设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为(  )。
    A

    f″(x)+f(x)=0

    B

    f′(x)+f(x)=0

    C

    f″(x)+f′(x)=0

    D

    f″(x)+f′(x)+f(x)=0


    正确答案: A
    解析:
    由f′(x)=f(π/2-x),两边求导得f″(x)=-f′(π/2-x)=-f[π/2-(π/2-x)]=-f(x),即f″(x)+f(x)=0。

  • 第11题:

    单选题
    设在区间(-∞,+∞)内函数f(x)>0,且当k为大于0的常数时有f(x+k)=1/f(x)则在区间(-∞,+∞)内函数f(x)是(  )。
    A

    奇函数

    B

    偶函数

    C

    周期函数

    D

    单调函数


    正确答案: C
    解析:
    对该函数由f(x+2k)=1/f(x+k)=f(x),故f(x)是周期函数。

  • 第12题:

    单选题
    若f(x)=-f(-x),在(0,+∞)内f′(x)>0,f″(x)>0,则在(-∞,0)内(  )。
    A

    f′(x)<0,f″(x)<0

    B

    f′(x)<0,f″(x)>0

    C

    f′(x)>0,f″(x)<0

    D

    f′(x)>0,f″(x)>0


    正确答案: A
    解析:
    可判断f(x)为奇函数,故函数关于(0,0)对称,又x∈(0,∞)时,f′(x)>0,f″(x)>0,故当x∈(-∞,0)时,根据f′(x)>0,f″(x)<0,因此应选(C)。

  • 第13题:

    设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)>0, f''(x)>0,则在(-∞,0)内必有:
    A. f'(x)>0, f''(x)>0 B.f'(x)<0, f''(x)>0
    C. f'(x)>0, f''(x)<0 D. f'(x)<0, f''(x)<0


    答案:B
    解析:
    提示:已知f(x)在(-∞,+∞)上是偶函数,函数图像关于y轴对称,已知函数在(0,+∞),f'(x)>0, f''(x)>0,表明在(0,+∞)上函数图像为单增且凹向,由对称性可知,f(x)在(-∞,0)单减且凹向,所以f'(x)<0, f''(x)>0。

  • 第14题:

    D 域由 x 轴,x2 + y2 ? 2x = 0( y ≥ 0)及 x+y=2 所围成, f (x, y)是连续函数,化


    答案:B
    解析:
    解:选 B。
    画积分区域如下图所示,

  • 第15题:

    设函数f(x)具有二阶导数,g(x)=f(0)(1-x)+f(1)x,则在区间[0,1]上



    A.A当f'(x)≥0时,f(x)≥g(x)
    B.当f'(x)≥0时,f(x)≤g(x)
    C.当f"(x)≥0时,f(x)≥g(x)
    D.当f"(x)≥0时,f(x)≤g(x)

    答案:D
    解析:
    由于g(0)=f(0),g(1)=f(1),则直线y=f(0)(1-x)+f(1)x过点(0,f(0))和(1,f(1)),当f"(x)≥0时,曲线y=f(x)在区间[0,1]上是凹的,曲线y=f(x)应位于过两个端点(0,f(0))和(1,f(1))的弦y=f(0)(1-x)+f(1)x的下方,即f(x)≤g(x)故应选(D).
    (方法二)令F(x)=f(x)-g(x)=f(x)-f(0)(1-x)-f(1)x,
    则 F'(x)=f'(x)+f(0)-f(1),F"(x)=f"(x).当f"(x)≥0时,F"(x)≥0,则曲线y=F(x)在区间[0,1]上是凹的.又F(0)=F(1)=0,从而,当x∈[0,1]时F(x)≤0,即f(x)≤g(x),故应选(D).
    (方法三)令F(x)=f(x)-g(x)=f(x)-f(0)(1-x)-f(1)x,

    则 F(x)=f(x)[(1-x)+x]-f(0)(1-x)-f(1)x

    =(1-x)[f(x)-f(0)]-x[f(1)-f(x)]
       =x(1-x)f'(ξ)-x(1-x)f'(η) (ξ∈(0,x),η∈(x,1))
       =x(1-x)[f'(ξ)-f'(η)]
      当f"(x)≥0时,f'(x)单调增,f'(ξ)≤f'(η),从而,当x∈[0,1]时F(x)≤0,即f(x)≤g(x),故应选(D).

  • 第16题:

    已知函数f(x)=lg(x+1)。
    (1)若0(2)若g(x)9;g 2为周期的偶函数,且当0≤x≤1时,有g(x)=f(x),求函数y-=g(x)x∈[1,2])的反函数。


    答案:
    解析:

    (2)

  • 第17题:

    设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)>0,f''(x)>0,则在(-∞,0)内必有( )。
    A. f'(x)>0,f''(x)>0 B. f(x) 0
    C. f'(x)>0,f''(x)


    答案:B
    解析:
    提示:f(x)在(-∞,+∞)上是偶函数,f'(x)在(-∞,+∞)在上是奇函数,f''(x)在(-∞,+∞)在上是偶函数,故应选B。

  • 第18题:

    设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)>0,f"(x)>0,则在(-∞,0)内必有()。

    • A、f'(x)>0,f"(x)>0
    • B、f'(x)<0,f"(x)>0
    • C、f'(x)>O,f"(x)<0
    • D、f'(x)<0,f"(x)<0

    正确答案:B

  • 第19题:

    单选题
    已知函数y=f(x)对一切x满足,若f’(x0)=0(x0≠0),则().
    A

    f(x0)是f(x)的极大值

    B

    f(x0)是f(x)的极小值

    C

    (x0(x0))是曲线y=f(x)的拐点

    D

    f(x0)不是f(x)的极值,(x0(x0))也不是曲线y=f(x)的拐点


    正确答案: A
    解析: 暂无解析

  • 第20题:

    单选题
    设函数f(x)满足关系式f″(x)+[f′(x)]2=x,且f′(0)=0,则(  )。
    A

    f(0)是f(x)的极大值

    B

    f(0)是f(x)的极小值

    C

    点(0,f(0))是曲线y=f(x)的拐点

    D

    f(0)不是f(x)的极值,点(0,f(0))也不是曲线y=f(x)的拐点


    正确答案: B
    解析:
    已知f″(x)+[f′(x)]2=x,方程两边对x求导得f‴(x)+2f″(x)·f′(x)=1,由f′(0)=0,则f″(0)=0,f‴(0)=1,故在点x=0的某邻域内f″(x)单调增加,即f″(0)与f″(0)符号相反,故点(0,f(0))是曲线y=f(x)的拐点。

  • 第21题:

    单选题
    (2008)设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f′(x)>0,f″(x)>0则在(-∞,0)内必有:()
    A

    f′(x)>0,f″(x)>0

    B

    f′(x)<0,f″(x)>0

    C

    f′(x)>0,f″(x)<0

    D

    f′(x)<0,f″(x)<0


    正确答案: C
    解析: 暂无解析

  • 第22题:

    单选题
    (2012)当a区间(a,b)内,函数y=f(x)图形沿x轴正向是:()
    A

    单调减且凸的

    B

    单调减且凹的

    C

    单调增且凸的

    D

    单调增且凹的


    正确答案: D
    解析: 暂无解析

  • 第23题:

    单选题
    设f(x)=-f(-x),x∈(-∞,+∞),且在(0,+∞)内f′(x)>0,f″(x)<0,则在(-∞,0)内(  )。
    A

    f′(x)>0,f″(x)>0

    B

    f′(x)>0,f″(x)<0

    C

    f′(x)<0,f″(x)>0

    D

    f′(x)<0,f″(x)<0


    正确答案: D
    解析:
    f(x)=-f(-x)⇔f(-x)=-f(x),则f(x)为奇函数。又f(x)可导,则f′(x)为偶函数,f″(x)存在且为奇函数,故在(-∞,0)内,f′(x)>0,f″(x)>0。

  • 第24题:

    单选题
    设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为(  )。
    A

    f′(x)+f(x)=0

    B

    f′(x)-f(x)=0

    C

    f″(x)+f(x)=0

    D

    f″(x)-f(x)=0


    正确答案: D
    解析:
    由f′(x)=f(π/2-x),两边求导得f″(x)=-f′(π/2-x)=-f[π/2-(π/2-x)]=-f(x),即f″(x)+f(x)=0。