参考答案和解析
正确答案:B
更多“设A,B都是n阶矩阵,若有可逆矩阵P使得P-1AP=B,则称矩阵A与矩阵B()。A、等价B、相似C、合同D、正交”相关问题
  • 第1题:

    设A,B,C均为n阶矩阵,若AB=C,且B可逆,则



    A.A矩阵C的行向量组与矩阵A的行向量组等价
    B.矩阵C的列向量组与矩阵A的列向量组等价
    C.矩阵C的行向量组与矩阵B的行向量组等价
    D.矩阵C的列向量组与矩阵B的列向量组等价

    答案:B
    解析:
    对矩阵A,C分别按列分块,记A=(α1,α2,…,αn),C=(γ,γ,…,γ).  由AB=C有

      可见

    即C的列向量组可以由A的列向量组线性表出.
      因为B可逆,有CB^-1=A.类似地,A的列向量组也可由C的列向量组线性表出,因此选(B).

  • 第2题:

    设n阶矩阵A与B等价, 则必须


    答案:D
    解析:

  • 第3题:

    设A与B都是n阶正交矩阵,证明AB也是正交矩阵.


    答案:
    解析:

  • 第4题:

    设A,B为N阶矩阵,且A,B的特征值相同,则().

    A.A,B相似于同一个对角矩阵
    B.存在正交阵Q,使得Q^TAQ=B
    C.r(A)=r(B)
    D.以上都不对

    答案:D
    解析:

  • 第5题:

    设A,B都是N阶矩阵,且存在可逆矩阵P,使得AP=B,则().

    A.A,B合同
    B.A,B相似
    C.方程组AX=0与BX=0同解
    D.r(A)=r(B)

    答案:D
    解析:
    因为P可逆,所以r(A)=r(B),选(D).

  • 第6题:

    设A,B为同阶可逆矩阵,则( )。

    A.AB=BA
    B.
    C.
    D.存在可逆矩阵P和Q,使PAQ=B

    答案:D
    解析:

  • 第7题:

    设N阶矩阵A与对角矩阵合同,则A是().

    A.可逆矩阵
    B.实对称矩阵
    C.正定矩阵
    D.正交矩阵

    答案:B
    解析:

  • 第8题:

    设n阶矩阵A与对角矩阵相似,则().

    A.A的n个特征值都是单值
    B.A是可逆矩阵
    C.A存在n个线性无关的特征向量
    D.A一定为n阶实对称矩阵

    答案:C
    解析:
    矩阵A与对角阵相似的充分必要条件是其有n个线性无关的特征向量,A有n个单特征值只是其可对角化的充分而非必要条件,同样A是实对称阵也是其可对角化的充分而非必要条件,A可逆既非其可对角化的充分条件,也非其可对角化的必要条件,选(C).

  • 第9题:

    设A为3阶矩阵.P为3阶可逆矩阵,且
    A.
    B.
    C.
    D.


    答案:B
    解析:
    故选B。

  • 第10题:

    设A为n阶可逆矩阵,则(-A)的伴随矩阵(-A)*等于()。

    • A、-A*
    • B、A*
    • C、(-1)nA*
    • D、(-1)n-1A*

    正确答案:D

  • 第11题:

    单选题
    设A,B都是n阶矩阵。若有可逆矩阵P使得P1AP=B,则称矩阵A与矩阵B(  )。
    A

    等价

    B

    相似

    C

    合同

    D

    正交


    正确答案: B
    解析:
    相似矩阵的定义:设A、B都是n阶矩阵,若存在可逆矩阵P,使得P1AP=B,则称B是A的相似矩阵,知B项正确。

  • 第12题:

    设矩阵A,B,C均为n阶矩阵,若AB=C,且B可逆,则( )


    A.矩阵C的行向量组与矩阵A的行向量组等价
    B.矩阵C的列向量组与矩阵A的列向量组等价
    C.矩阵C的行向量组与矩阵B的行向量组等价
    D.矩阵C的行向量组与矩阵B的列向量组等价


    答案:B
    解析:

  • 第13题:

    设A,B为n阶矩阵,考虑以下命题:①若A,B为等价矩阵,则A,B的行向量组等价②若行列式.,则A,B为等价矩阵③若都只有零解,则A,B为等价矩阵④若A,B为相似矩阵,则的解空间的维数相同以上命题中正确的是( ).

    A.①③
    B.②④
    C.②③
    D.③④

    答案:D
    解析:

  • 第14题:

    设A是3阶矩阵,P=(a1,a2,a3)是3阶可逆矩阵,且P-1AP=


    答案:B
    解析:
    提示 当P-1AP=Λ时,P=(a1,a2,a3)中a1,a2,a3的排列满足对应关系,a1对应λ1,a2对应λ2,a3对应λ3,可知a1对应特征值λ1=1,a2对应特征值λ2=2,a3对应特征值

  • 第15题:

    设A,B都是n阶可逆矩阵,则().


    答案:B
    解析:

  • 第16题:

    设A,B为n阶可逆矩阵,则().



    答案:D
    解析:
    因为A,B都是可逆矩阵,所以A,B等价,即存在可逆矩阵P,Q,使得PAQ=B,选(D).

  • 第17题:

    设A为m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r1,矩阵B=AC的秩为r,则



    答案:C
    解析:

  • 第18题:

    设A为n阶实对称矩阵,下列结论不正确的是().

    A.矩阵A与单位矩阵E合同
    B.矩阵A的特征值都是实数
    C.存在可逆矩阵P,使P^-1AP为对角阵
    D.存在正交阵Q,使Q^TAQ为对角阵

    答案:A
    解析:
    根据实对称矩阵的性质,显然(B)、(C)、(D)都是正确的,但实对称矩阵不一定是正定矩阵,所以A不一定与单位矩阵合同,选(A).

  • 第19题:

    设a为N阶可逆矩阵,则( ).《》( )


    答案:C
    解析:

  • 第20题:

    设A是3阶矩阵,P = (α1,α2,α3)是3阶可逆矩阵,且,若矩阵Q=(α2,α1,α3),则Q-1AQ=( )。


    答案:B
    解析:
    提示:由条件知,λ1=1,λ2=2,λ3=0是矩阵A的特征值,而α1,α2,α3是对应的特征向量,故有

  • 第21题:

    单选题
    设A,B都是n阶矩阵,若有可逆矩阵P使得P-1AP=B,则称矩阵A与矩阵B()。
    A

    等价

    B

    相似

    C

    合同

    D

    正交


    正确答案: D
    解析: 由相似矩阵的定义知B正确。故选B。