更多“设向量α=(3,2),求(αTα)101.”相关问题
  • 第1题:

    设α,β为三维非零列向量,(α,β)=3,A=αβ^T,则A的特征值为_______.


    答案:1、0
    解析:

  • 第2题:

    设A=有三个线性无关的特征向量,求x,y满足的条件.


    答案:
    解析:

  • 第3题:

    设A=,求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.


    答案:
    解析:

  • 第4题:

    设α,β为三维列向量,矩阵A=αα^T+ββ^T,其中α^T,β^T分别是α,β的转置.证明:
      (Ⅰ)秩r(A)≤2;
      (Ⅱ)若α,β线性相关,则秩r(A)<2.


    答案:
    解析:
    【证明】(Ⅰ)因为α,β为三维列向量,那么αα^T和ββ^T都是三阶矩阵,
    且秩r(αα^T)≤1,r(ββ^T)≤1.
    那么,r(A)=r(αα^T+ββ^T)≤r(αα^T)+r(ββ^T)≤2.
    (Ⅱ)由于α,β线性相关,不妨设α=kβ,于是
    r(A)=r(αα^T+ββ^T)=r((1+k^2)ββ^T)≤r(β)≤1<2.
    【评注】本题考查矩阵秩的性质公式.
    (Ⅰ)中有两个基本知识点:①r(αα^T)≤1和②r(A+B)≤r(A)+r(B).
    (Ⅱ)中有两个基本知识点:①α,β线性相关的几何意义和②r(kA)=r(A),k≠0.
    注意,如果分块矩阵比较熟悉,本题的(Ⅰ)也可如下处理:
    因为

    那么
    从而r(A)≤2.

  • 第5题:

    设A为3阶实对称矩阵,A的秩为2,且. (Ⅰ)求A的特征值与特征向量; (Ⅱ)求矩阵A


    答案:
    解析:

  • 第6题:

    设实对称阵A的特征值为0,2,2,且对应特征值2的两个特征向量为,求.


    答案:
    解析:

  • 第7题:

    设向量组,,若此向量组的秩为2,求的值。


    答案:
    解析:

  • 第8题:

    已知向量组a1==(3,2,-5)T,a2= (3,-1,3)T,a3 = (1,-1/3,1)T,a4 =(6,-2,6)T,则该向量组的一个极大线性无关组是:

    A.a2,a4
    B.a3,a4
    C.a1,a2
    D.a2,a3

    答案:C
    解析:

  • 第9题:

    设α,β为四维非零列向量,且α⊥β,令A=αβ^T,则A的线性无关特征向量个数为().

    A.1
    B.2
    C.3
    D.4

    答案:C
    解析:

  • 第10题:

    设向量组α1=(1,0,1)T,α2=(0,1,1)T,a3=(1,3,5)T,不能由向量组β1,=(1,1,1)T,f12=(1,2,3)T,3β=(3,4,α)T线性表示。
    (1)求a的值;
    (2)将β1β2β2由α1α2α3线性表示。


    答案:
    解析:
    (1)由于α1,α2,α3不能由β1β2β3,线性表示,对(β1,β2,β3,α1,α2,α3进行初等变换∶

    故β1=2α1+4α2-α3,β2=α1+2α2,β3=5α1+10α2-2α3

  • 第11题:

    已知3维列向量α,β满足αTβ=3,设3阶矩阵A=βαT,则()。

    • A、β是A的属于特征值0的特征向量
    • B、α是A的属于特征值0的特征向量
    • C、β是A的属于特征值3的特征向量
    • D、α是A的属于特征值3的特征向量

    正确答案:C

  • 第12题:

    单选题
    设α(→)1,α(→)2,…,α(→)s和β(→)1,β(→)2,…,β(→)t为两个n维向量组,且秩(α(→)1,α(→)2,…,α(→)s)=秩(β(→)1,β(→)2,…,β(→)t)=r,则(  )。
    A

    此两个向量组等价

    B

    秩(α()1α()2,…,α()sβ()1β()2,…,β()t)=r

    C

    α()1α()2,…,α()s可以由β()1β()2,…,β()t线性表示时,此二向量组等价

    D

    s=t时,二向量组等价


    正确答案: C
    解析:
    两向量组等价的充要条件是所含向量的个数相等,且能相互线性表示。

  • 第13题:

    设非零n维列向量α,β正交且A=αβT.证明:A不可以相似对角化.


    答案:
    解析:

  • 第14题:

    设A是三阶实对称矩阵,r(A)=1,A^2-3A=O,设(1,1,-1)t为A的非零特征值对应的特征向量.(1)求A的特征值;(2)求矩阵A.


    答案:
    解析:

  • 第15题:

    设二维非零向量α不是二阶方阵A的特征向量.
      (1)证明α,Aα线性无关;
      (2)若Aα^2+Aα-6α=0,求A的特征值,讨论A可否对角化;


    答案:
    解析:

  • 第16题:

    设A为三阶实对称矩阵,A的秩为2,且

      (Ⅰ)求A的所有特征值与特征向量;
      (Ⅱ)求矩阵A.


    答案:
    解析:

  • 第17题:

    设3阶实对称矩阵A的各行元素之和都为3,向量都是齐次线性方程组AX=0的解.① 求A的特征值和特征向量.② 求作正交矩阵Q和对角矩阵


    答案:
    解析:

  • 第18题:

    设3阶对称阵A的特征值为;对应的特征向量依次为 ,求A


    答案:
    解析:

  • 第19题:

    设矩阵求矩阵A的列向量组的一个极大无关组, 并把不属于极大无关组的列向量用极大无关组线性表示出来.


    答案:
    解析:

  • 第20题:

    已知三维列向量αβ满足αTβ=3,设3阶矩阵A=βαT,则:

    A. β是A的属于特征值0的特征向量
    B. α是A的属于特征值0的特征向量
    C. β是A的属于特征值3的特征向量
    D. α是A的属于特征值3的特征向量

    答案:C
    解析:
    通过矩阵的特征值、特征向量的定义判定。只要满足式子Ax=λx,向量x即为矩阵A对应特征值λ的特征向量。
    再利用题目给出的条件:
    αTβ=3 ①
    A=βαT ②
    将等式②两边均乘β,得辱A*β=βαT*β,变形Aβ=β(αTβ),代入式①得Aβ=β*3,故Aβ=3*β成立。

  • 第21题:

    设行向量组(2,1,1,1),(2,1,a,a),(3,2,1,a),(4,3,2,1)线性相关,且a≠l,求a。


    答案:
    解析:

  • 第22题:

    已知向量组α1=(3,2,-5)T,α2=(3,-1,3)T,,α4=(6,-2,6)T,则该向量组的一个极大无关组是()。

    • A、α2,α4
    • B、α3,α4
    • C、α1,α2
    • D、α2,α3

    正确答案:C

  • 第23题:

    单选题
    已知向量组α1=(3,2,-5)T,α2=(3,-1,3)T,,α4=(6,-2,6)T,则该向量组的一个极大无关组是()。
    A

    α2,α4

    B

    α3,α4

    C

    α1,α2

    D

    α2,α3


    正确答案: C
    解析: 暂无解析