更多“设函数y=e2x,则y"(0)=_____.”相关问题
  • 第1题:

    若y=e2x,则dy=_________.


    答案:
    解析:
    【答案】2e2xdx【考情点拨】本题考查了微分的知识点.

  • 第2题:

    设随机变量X~N(0,1),且y=9X^2,则y的密度函数为_______.


    答案:
    解析:

  • 第3题:

    求函数f(x,y)=e2x(x+y2+2y)的极值.?


    答案:
    解析:

  • 第4题:

    填空题
    设函数y=y(x)由方程y=f(x2+y2)+f(x+y)所确定,且y(0)=2,其中f是可导函数,f′(2)=1/2,f′(4)=1,则dy/dx|x=0=____。

    正确答案: -1/7
    解析:
    由方程y=f(x2+y2)+f(x+y)。两边对x求导得yx′=f′(x2+y2)(2x+2y·yx′)+f′(x+y)(1+yx′)。
    又y(0)=2,f′(2)=1/2,f′(4)=1,,故y′|x0=f′(4)·4y′|x0+f′(2)(1+y′|x0),y′|x0=4y′|x0+(1+y′|x0)/2,解得y′|x0=-1/7。

  • 第5题:

    单选题
    设函数y=y(x)由方程ln(x2+y)=x3y+sinx确定,则(dy/dx)|x=0=(  )。
    A

    1

    B

    2

    C

    3

    D

    4


    正确答案: B
    解析:
    ln(x2+y)=x3y+sinx两边同时对x求导,得(2x+y′)/(x2+y)=3x2y+x3y′+cosx,当x=0时,y=1,代入上式得y′(0)=1。

  • 第6题:

    填空题
    设二元函数z=xex+y+(x+1)ln(1+y),则dz|(1,0)=____。

    正确答案: 2edx+(e+2)dy
    解析:
    由二元函数z=xexy+(x+1)ln(1+y)得∂z/∂x=exy+xexy+ln(1+y),∂z/∂y=xexy+(x+1)/(1+y),故有∂z/∂x|10=2e,∂z/∂y|10=e+2,dz|10=2edx+(e+2)dy。

  • 第7题:

    问答题
    设二阶线性微分方程y″+P(x)y′+Q(x)y=f(x)的三个特解是y1=x,y2=ex,y3=e2x,试求此方程满足条件y(0)=1,y′(0)=3的特解。

    正确答案:
    由题意可知,Y1=ex-x、Y2=e2x-x是原方程对应齐次方程的两个线性无关的解[因(ex-x)/(e2x-x)≠常数],故原方程的通解为y=C1(ex-x)+C2(e2x-x)+x,由y(0)=1,y′(0)=3,得C1=-1,C2=2。故所求原方程的特解为y=-(ex-x)+2(e2x-x)+x=2e2x-ex
    解析: 暂无解析

  • 第8题:

    单选题
    设f(x,y)与φ(x,y)均为可微函数,且φy′(x,y)≠0。已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是(  )。
    A

    若fx′(x0,y0)=0,则fy′(x0,y0)=0

    B

    若fx′(x0,y0)=0,则fy′(x0,y0)≠0

    C

    若fx′(x0,y0)≠0,则fy′(x0,y0)=0

    D

    若fx′(x0,y0)≠0,则fy′(x0,y0)≠0


    正确答案: A
    解析:
    设z=f(x,y)=f(x,y(x)),由题意可知∂z/∂x=fx′+fy′·(dy/dx)=0。
    又φ(x,y)=0,则dy/dx=-φx′/φy′。故fx′-(φx′/φy′)fy′=0。又φy′≠0,则fx′φy′=φx′fy′。所以当fx′≠0时fy′≠0。

  • 第9题:

    填空题
    设函数y=y(x)由方程y=1-xey确定,则(dy/dx)|x=0=____。

    正确答案: -e
    解析:
    设F(x,y)=y-1+xey,则dy/dx=-Fx′/Fy′=-ey/(1+xey)。x=0时,y=1,代入上式得(dy/dx)|x0=-e。

  • 第10题:

    填空题
    设函数y=y(x)由方程exy+ln[y/(x+1)]=0所确定,则y′(0)=____。

    正确答案: (e-1)/e2
    解析:
    exy+ln[y/(x+1)]=0方程两边对x求导,得exy(y+xy′)+y′/y-1/(x+1)=0。当x=0时,y=e1。将x=0,y=e1代入上式,得y′(0)=(e-1)/e2

  • 第11题:

    填空题
    设函数y=1/(2x+3),则y(n)(0)=____。

    正确答案: (-1)n2nn!/3n+1
    解析:
    本题采用归纳法:y=(2x+3)1,y′=-2(2x+3)2,y″=22·2(2x+3)3,y‴=-23·3·2(2x+3)4,……
    ∴yn(x)=(-1)n2n·n!/(2x+3)n1,yn(0)=(-1)n2nn!/3n1

  • 第12题:

    单选题
    设函数y=y(x)由方程ln(x2+y)=x3y+sinx确定,则(dy/dx)|x=0=(  )。
    A

    0

    B

    1

    C

    2

    D

    e


    正确答案: B
    解析:
    ln(x2+y)=x3y+sinx两边同时对x求导,得(2x+y′)/(x2+y)=3x2y+x3y′+cosx,当x=0时,y=1,代入上式得y′(0)=1。

  • 第13题:

    设函数y=sin(2x+1),则y"=_____.


    答案:
    解析:
    填-4sin(2x+1).

  • 第14题:

    设函数y(x)是微分方程满足条件y(0)=0的特解.
      (Ⅰ)求y(x);
      (Ⅱ)求曲线y=y(x)的凹凸区间及拐点.


    答案:
    解析:

  • 第15题:

    设函数y=e2xcos3x,则dy=()。

    • A、e2x(2cos3x-3sin3x)
    • B、e2x(2cos3x-3sin3x)dx
    • C、-6e2xsin3xdx
    • D、e2x(2cos3x+3sin3x)dx

    正确答案:B

  • 第16题:

    单选题
    设确定了函数y=g(x),则(  )。
    A

    x=0是函数y=g(x)的驻点,且是极大值点

    B

    x=0是函数y=g(x)的驻点,且是极小值点

    C

    x=0不是函数y=g(x)的驻点

    D

    存在x=0的一个小邻域,y=g(x)是单调的


    正确答案: A
    解析:
    g′(x)=dy/dx=(dy/dt)·(dt/dx)。dy/dt=2t/(1+t2),dx/dt=1/(1+t2)。故y′(x)=2t。又x=0时,t=0,g′(x)=0;t<0时,x<0,g′(x)<0,g(x)单调减少;t>0时,x>0,g′(x)>0,g(x)单调增加。故x=0是y=g(x)的驻点,且是极小值点。

  • 第17题:

    填空题
    设函数y=y(x)由方程ln(x2+y)=x3y+sinx确定,则(dy/dx)|x=0=____。

    正确答案: 1
    解析:
    ln(x2+y)=x3y+sinx两边同时对x求导,得(2x+y′)/(x2+y)=3x2y+x3y′+cosx,当x=0时,y=1,代入上式得y′(0)=1。

  • 第18题:

    单选题
    设函数y=y(x)由方程y=f(x2+y2)+f(x+y)所确定,且y(0)=2,其中f是可导函数,f′(2)=1/2,f′(4)=1,则dy/dx|x=0=(  )。
    A

    1

    B

    -1

    C

    1/7

    D

    -1/7


    正确答案: B
    解析:
    由方程y=f(x2+y2)+f(x+y)。两边对x求导得yx′=f′(x2+y2)(2x+2y·yx′)+f′(x+y)(1+yx′)。
    又y(0)=2,f′(2)=1/2,f′(4)=1,故y′|x=0=f′(4)·4y′|x=0+f′(2)(1+y′|x=0),y′|x=0=4y′|x=0+(1+y′|x=0)/2,解得y′|x=0=-1/7。

  • 第19题:

    单选题
    设z=φ(x2-y2),其中φ有连续导数,则函数z满足(  )。
    A

    x∂z/∂x+y∂z/∂y=0

    B

    x∂z/∂x-y∂z/∂y=0

    C

    y∂z/∂x+x∂z/∂y=0

    D

    y∂z/∂x-x∂z/∂y=0


    正确答案: D
    解析:
    令u=x2-y2,则z=φ(u),∂z/∂x=φ′(u)·2x=2xφ′(u),∂z/∂y=-2yφ′(u),故y∂z/∂x+x∂z/∂y=0。

  • 第20题:

    单选题
    设y1=e2x/2,y2=exshx,y3=exchx,则(  )。
    A

    y1,y2,y3都没有相同的原函数

    B

    y2与y3有相同的原函数,但与y1的原函数不相同

    C

    y1,y2,y3有相同的原函数ex/(chx+shx)

    D

    y1,y2,y3有相同的原函数ex/(chx-shx)


    正确答案: B
    解析:
    由于y1=e2x/2,y2=(e2x/2)-1/2,y3=(e2x/2)+1/2,故三个函数的原函数都不相同。

  • 第21题:

    填空题
    设f(x,y,z)=exyz2,其中z=z(x,y)是由x+y+z+xyz=0确定的隐函数,则fx′(0,1,-1)=____。

    正确答案: 1
    解析:
    构造函数F(x,y,z)=x+y+z+xyz,则有∂z/∂x=-Fx′/Fz′=-(1+yz)/(1+xy),(∂z/∂x)|01,-1=0,又由f(x,y,z)=exyz2 ,得fx′=exyz2+exy·2z·zx′,代入(0,1,-1),得fx′(0,1,-1)=e0×1×(-1)2+e0×1×2×(-1)×0=1。

  • 第22题:

    填空题
    设函数y=y(x)由方程2xy=x+y所确定,则dy|x=0=____。

    正确答案: (ln2-1)dx
    解析:
    2xy=x+y等式两边求微分,得2xyln2d(xy)=dx+dy,即2xyln2(xdy+ydx)=dx+dy。当x=0时,y=1,代入上式得dy|x0=(ln2-1)dx。

  • 第23题:

    单选题
    设函数y=y(x)由方程ln(x2+y)=x3y+sinx确定,则(dy/dx)|x=0=(  )。
    A

    ln1

    B

    0

    C

    sin1

    D

    1


    正确答案: A
    解析:
    ln(x2+y)=x3y+sinx两边同时对x求导,得(2x+y′)/(x2+y)=3x2y+x3y′+cosx,当x=0时,y=1,代入上式得y′(0)=1。