更多“设函数y=sinx,则y"=_____.”相关问题
  • 第1题:

    设y=ln(sinx),则二阶导数y″等于(  )。


    答案:D
    解析:
    函数y=lnx,则y′=1/x。因此,y=ln(sinx)时,根据复合函数求导的链式法则,

  • 第2题:

    设函数y=sinx2+2x,求dy.


    答案:
    解析:
    y'=2xcosx2+2,则dy=2xcosx2+2)dx.

  • 第3题:

    设函数y=xsinx,则y"=_____.


    答案:
    解析:
    填2cosx-xsinx.y'=sinx+xcosx,y"=cosx+cosx-xsinx=2cosx-xsinx·

  • 第4题:

    设(X,Y)的联合分布函数为F(x,y)=则P(max{X,y}>1)=_______.


    答案:
    解析:
    由Fx(x)=F(x,+∞)=得X~E(2),同理Y~E(3),且X,Y独立.P(max{X,Y}>1)=P(X>1Y>1)=1-P(X≤1,Y≤1)=1-P(X≤1)P(Y≤1)

  • 第5题:

    下列函数在定义域内,既是奇函数又是增函数的是()

    A.y=sinx
    B.y=log2x
    C.y=x+8
    D.y=x3

    答案:D
    解析:

  • 第6题:

    下列函数中,与函数定义域相同的函数为( )。
    A.y=1/sinx
    B.y=lnx/x
    C.
    D.y=sinx/x


    答案:D
    解析:

  • 第7题:

    设y=cosx,则y′′=( )

    A.sinx
    B.cosx
    C.-cosx
    D.-sinx

    答案:C
    解析:
    【考情点拨】本题考查了函数的二阶导数的知识点.【应试指导】y=cosx,y'=-sinx,y''=-cosx.

  • 第8题:

    单选题
    若∂2u/∂x∂y=1,且当x=0时,u=siny,当y=0时,u=sinx,则u(x,y)=(  )。
    A

    xy+sinx+siny

    B

    -xy+sinx+siny

    C

    xy-sinx+siny

    D

    xy+sinx-siny


    正确答案: A
    解析:
    u是x、y的二元函数,则∂2u/∂x∂y对y积分后应加一个关于x的函数,而不是常数C。即对∂2u/∂x∂y=1两边对y积分得∂u/∂x=y+φ′(x),再两边对x积分得u(x,y)=xy+φ(x)+ψ(y)。又x=0时,u=siny,得siny=φ(0)+ψ(y),即ψ(y)=siny-φ(0);又y=0时,u=sinx得sinx=φ(x)+ψ(0),令x=0得φ(0)+ψ(0)=0。故u(x,y)=xy+sinx+siny-φ(0)-ψ(0)=xy+sinx+siny。

  • 第9题:

    填空题
    设函数y=y(x)由方程ln(x2+y)=x3y+sinx确定,则(dy/dx)|x=0=____。

    正确答案: 1
    解析:
    ln(x2+y)=x3y+sinx两边同时对x求导,得(2x+y′)/(x2+y)=3x2y+x3y′+cosx,当x=0时,y=1,代入上式得y′(0)=1。

  • 第10题:

    填空题
    设u=sinx+φ(sinx+cosy)(φ为可微函数),且当x=0时,u=sin2y,则∂u/∂y=____。

    正确答案: 2(sinxsiny+cosysiny)
    解析:
    由于x=0,u=sin2y,则代入u=sinx+φ(sinx+cosy)中,得sin2y=φ(cosy)=1-cos2y,即φ(v)=1-v2。则φ′(v)=-2v。故有∂u/∂y=φ′(sinx+cosy)(-siny)=(-2sinx-2cosy)(-siny)=2(sinxsiny+cosysiny)。

  • 第11题:

    单选题
    设u=sinx+φ(sinx+cosy)(φ为可微函数),且当x=0时,u=sin2y,则∂u/∂y=(  )。
    A

    2(sinxsiny+cosysiny)

    B

    2(sinxsiny-cosysiny)

    C

    sinxsiny+cosysiny

    D

    sinxsiny-cosysiny


    正确答案: C
    解析:
    由于x=0,u=sin2y,则代入u=sinx+φ(sinx+cosy)中,得sin2y=φ(cosy)=1-cos2y,即φ(v)=1-v2。则φ′(v)=-2v。故有∂u/∂y=φ′(sinx+cosy)(-siny)=(-2sinx-2cosy)(-siny)=2(sinxsiny+cosysiny)。

  • 第12题:

    单选题
    设函数y=y(x)由方程ln(x2+y)=x3y+sinx确定,则(dy/dx)|x=0=(  )。
    A

    0

    B

    1

    C

    2

    D

    e


    正确答案: B
    解析:
    ln(x2+y)=x3y+sinx两边同时对x求导,得(2x+y′)/(x2+y)=3x2y+x3y′+cosx,当x=0时,y=1,代入上式得y′(0)=1。

  • 第13题:

    设函数y=x3+sinx+3,求y'.


    答案:
    解析:
    y'=(x3)'+(sinx)'+(3)'=3x2+cosx.

  • 第14题:

    设函数y=x4sinx,求dy.


    答案:
    解析:
    因为y'=4x3sinx+x4cosx,所以dy=(4x3sinx+x4cosx)dx.

  • 第15题:

    设函数y=sin(2x+1),则y"=_____.


    答案:
    解析:
    填-4sin(2x+1).

  • 第16题:

    下列各选项中,正确的是(  )

    A.y=x+sinx是偶函数
    B.y=x+sinx是奇函数
    C.y=|x |+sinx是偶函数
    D.y=| x |+sinx是奇函数

    答案:B
    解析:

  • 第17题:

    若函数y=(x)在[-1,1]上是单调函数,则使得y=(sinx)必为单调函数的区间是( )

    A.R
    B.[-1,1]
    C.
    D.[-sin1,sin1]


    答案:C
    解析:
    【考情点拨】本题主要考查的知识点为函数的单调区间. 1应试指导】y=(x)在[-1,1]上是单调函数,∴y=(x)的单调区间为[-1,1],

  • 第18题:

    设Y=sinx+COSx,则dy等于().

    A.(cosx+sinx)dx
    B.(-cosx+sinx)dx
    C.(cosx-sinx)dx
    D.(-cosx-sinx)dx

    答案:C
    解析:
    由微分的基本公式及四则运算法则可得因此选C.

  • 第19题:

    设函数y=2x+sinx,则y′=( )

    A.1-cos x
    B.1+cos x
    C.2-cos x
    D.2+cos x

    答案:D
    解析:

  • 第20题:

    单选题
    设函数y=y(x)由方程ln(x2+y)=x3y+sinx确定,则(dy/dx)|x=0=(  )。
    A

    1

    B

    2

    C

    3

    D

    4


    正确答案: B
    解析:
    ln(x2+y)=x3y+sinx两边同时对x求导,得(2x+y′)/(x2+y)=3x2y+x3y′+cosx,当x=0时,y=1,代入上式得y′(0)=1。

  • 第21题:

    单选题
    若∂2u/∂x∂y=1,且当x=0时,u=siny,当y=0时,u=sinx,则u(x,y)=(  )。
    A

    xy+sinx-siny

    B

    xy+sinx+siny

    C

    x/y+sinx-cosy

    D

    x/y+sinx+cosy


    正确答案: C
    解析:
    u是x、y的二元函数,则∂2u/∂x∂y对y积分后应加一个关于x的函数,而不是常数C,即对∂2u/∂x∂y=1两边对y积分得∂u/∂x=y+φ′(x),再两边对x积分得u(x,y)=xy+φ(x)+ψ(y)。又x=0时,u=siny,得siny=φ(0)+ψ(y),即ψ(y)=siny-φ(0);又y=0时,u=sinx得sinx=φ(x)+ψ(0),令x=0得φ(0)+ψ(0)=0。故u(x,y)=xy+sinx+siny-φ(0)-ψ(0)=xy+sinx+siny。

  • 第22题:

    单选题
    设u=sinx+φ(sinx+cosy)(φ为可微函数),且当x=0时,u=sin2y,则∂u/∂y=(  )。
    A

    sinxsiny+cosysiny

    B

    sinxsiny+cosycosy

    C

    2(sinxsiny+cosysiny)

    D

    2(sinxsiny+cosycosy)


    正确答案: B
    解析:
    由于x=0,u=sin2y,则代入u=sinx+φ(sinx+cosy)中,得sin2y=φ(cosy)=1-cos2y,即φ(v)=1-v2。则φ′(v)=-2v。故有∂u/∂y=φ′(sinx+cosy)(-siny)=(-2sinx-2cosy)(-siny)=2(sinxsiny+cosysiny)。

  • 第23题:

    单选题
    设函数y=y(x)由方程ln(x2+y)=x3y+sinx确定,则(dy/dx)|x=0=(  )。
    A

    ln1

    B

    0

    C

    sin1

    D

    1


    正确答案: A
    解析:
    ln(x2+y)=x3y+sinx两边同时对x求导,得(2x+y′)/(x2+y)=3x2y+x3y′+cosx,当x=0时,y=1,代入上式得y′(0)=1。