参考答案和解析
0.67
更多“从1 到100 这一百个数字中任取一个,取出的数字能被2 或者被3 整除的概率是”相关问题
  • 第1题:

    1到1000的整数(包含1和1000)中,至少能被2、3、5任意一个数整除的数共有(63)个。

    A.668

    B.701

    C.734

    D.767


    正确答案:C
    解析:这是一个典型的容斥原理的应用题。具体的解答思路如下。设A表示1到1000的整数(包含1和1000)中能够被2整除的数的集合;B表示1到1000的整数(包含1和1000)中能够被3整除的数的集合:C表示1到1000的整数(包含1和1000)中能够被5整除数的集合。则其中,符号表示对计算结果向下取整数。至少能被2、3、5任意一个数整除的数的个数为|A∪B∪C|=|A|+|B|+|C|-|A∩B|-|A∩C|-|B∩C|+|A∩B∩C|=500+333+200-166-100-66+33=734

  • 第2题:

    从2,3,4,5,6这五个数字中挑选两个,组成一个两位数,使其不能被3整除,则有多少种取法?


    正确答案:14

  • 第3题:

    王老师在教授“2、3、5整除法”时,首先让班上同学任意提出一个数字,他都可以立即回答这个数能否被“2、3、5”整除。在热烈的氛围中,王老师再趁机提出,“大家想知道我为什么能一下子猜出数字是否能被整除吗?”随后进入整除法的教学。这种教学导入方式是()。

    A.故事导入法
    B.衔接导人法
    C.悬念导入法
    D.直接导入法

    答案:C
    解析:
    悬念导入法是指在教学中,创设带有悬念性的问题来导入新的内容,给学生造成一种神秘感,从而激起学生的好奇心和求知欲的一种导入方法。

  • 第4题:

    从1,2,3,……,10共十个数字中任取一个,然后放回,先后取出5个数字,则所得5个数字全不相同的事件的概率等于()。

    A:0.3024
    B:0.0302
    C:0.2561
    D:0.0285

    答案:A
    解析:
    该事件的概率=10*9*8*7*6/105=0.3024。

  • 第5题:

    一个三位数,百位的数字比十位的数字大而且都可以被3 整除,十位的数字和个位的数字都可以被2整除而且相加的值比百位大1,则这个三位数是( )。

    A.632
    B.942
    C.964
    D.639

    答案:C
    解析:
    根据题目,百位的数字比十位的数字大而且都可以被3 整除,排除B;十位的数字和个位的数字都可以被2 整除,排除A、D,只剩余964,且满足十位个位相加值比百位大l,故选择C。

  • 第6题:

    从1.2.3.4.5.6.7.8.9这九个数字中,随机取出一个数字,这个数字是奇数的概率是()


    答案:B
    解析:

  • 第7题:

    从0,1,2,3,4,5中任取3个数字,组成能被3整除的无重复数字的3位数有( )个

    A.18
    B.24
    C.36
    D.40
    E.96

    答案:D
    解析:

  • 第8题:

    一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是l,3张卡片上的数
    字是2,2张卡片上的数字是3,从盒中任取3张卡片。(1)求所取3张卡片上的数字完全相同的概率;(2)x表示所取3张卡片上的数字的中位数,求X的分布列和EX。


    答案:
    解析:

    (2)中位数X可以取1,2,3

  • 第9题:

    编写一个Java程序,对于给定的年份,回答“Leap Year”(闰年)或者“Not a Leap Year”(平年)。如果一个年份能被4整除,但是不能被100整除,它是闰年;如果一个年份能被100整除,也能被400整除,它也是闰年。需要定义名为LeapYear的服务提供类

  • 第10题:

    从1,2,…,10共十个数字中任取一个,然后放回,先后取出5个数字,则所得5个数字全不相同的事件的概率等于()


    正确答案:0.3024

  • 第11题:

    问答题
    35.从1,2.3,4,5中任取3个数字,则这3个数字中不含1的概率为

    正确答案:
    解析:

  • 第12题:

    单选题
    在1,2,3,…,40中,至少要取出几个数,才能保证取出的数中一定有一个数能被4整除?()
    A

    3

    B

    4

    C

    21

    D

    31


    正确答案: D
    解析: 1,2,3,…,40中,能被4整除的有10个,因此最少要取出40-10+1=31个才能满足题干要求,选D。

  • 第13题:

    现有以下程序: Private Sub Command1 Click( ) c1=0 c2=0 For i=1 To 100 If i Mod 3=0 Then c1=c1+1 Else If i Mod 7=0 Then c2=c2+1 End If Next i Print c1+c2 End Sub 此程序运行后输出的是在1~100范围内( )。

    A.同时能被3和7整除的整数个数

    B.能被3或7整除的整数个数(同时被3和7整除的数只记一次)

    C.能被3整除,而不能被7整除的整数个数

    D.能被7整除,而不能被3整除的整数个数


    正确答案:B
    B。【解析】i是1到100的循环,在程序中,对3和7取模,显然就是3和7的倍数关系。需要注意的是If和else语句分别判断3和7的倍数而同时是21倍数的时候会不计,这有别于传统的计数方法。

  • 第14题:

    在所有的1位数中任取一个数,这个数能被2或3整除的概率为________。

    A.1/2

    B.3/4

    C.7/10

    D.4/5


    正确答案:C
    解析:设A={取出的数能被2整除}={0,2,4,6,8},B={取出的数能被3整除}={0,3,6,9},则有A+B={取出的数能被2或3整除}={0,2,3,4,6,8,9},所以P(A+B)=7/10。

  • 第15题:

    从1,2,…,10共十个数字中任取一个,然后放回,先后取出5个数字,则所得5个数字全不相同的事件概率等于()。

    A:0.3024
    B:0.0302
    C:0.2561
    D:0.0285

    答案:A
    解析:

  • 第16题:

    用1到7的数字组成一个六位数密码,密码中每个数字只使用一次,在所有可能的密码排列中,能被3整除的数字占所有可能的排列数的比重为:?
    A1/6
    B2/7
    C3/7
    D1/3


    答案:C
    解析:

  • 第17题:

    从0,2,4,6中取出3个数字,从1,3,5,7中取出两个数字,共能组成多少个没有重复数字且大于65000的五位数


    答案:
    解析:
    根据约束条件“大于65000的五位数”可知这样的五位数只有 7××××、65×××、67×××三种类型.
    (1)能组成7××××型的五位数的个数是

    (2)能组成65×××型的五位数的个数是

    (3)能组成67×××型的五位数的个数是

    故所求的五位数的个数为

  • 第18题:

    从1到100的整数中任取一个数,则该数能被5或7整除的概率为( )

    A.0.02
    B.0.14
    C.0.2
    D.0.32
    E.0.34

    答案:D
    解析:

  • 第19题:

    从标号1到10中的10张卡片中随抽2张,而它们的标号2种能被5整除的概率



    答案:A
    解析:

  • 第20题:

    从1,2,…,10共十个数字中任取一个,然后放回,先后取出5个数字,则所得5个数字全不相同的事件的概率等于。

    A.0.3024
    B.0.0302
    C.0.2561
    D.0.0285

    答案:A
    解析:

  • 第21题:

    三段论:“因为3258的各位数字之和能被3整除,所以3258能被3整除”。前提是()

    • A、 “3258能被3整除”是小前提
    • B、 “3258的各位数字之和能被3整除”是大前提
    • C、 “各位数字之和能被3整除的数都能被3整除” 是省略的大前提
    • D、 “3258能被3整除”是大前提

    正确答案:C

  • 第22题:

    从数字1,2,…,10中有放回地任取4个数字,则数字10恰好出现两次的概率为()


    正确答案:0.0486

  • 第23题:

    单选题
    三段论:“因为3258的各位数字之和能被3整除,所以3258能被3整除”。前提是()
    A

     “3258能被3整除”是小前提

    B

     “3258的各位数字之和能被3整除”是大前提

    C

     “各位数字之和能被3整除的数都能被3整除” 是省略的大前提

    D

     “3258能被3整除”是大前提


    正确答案: C
    解析: 暂无解析

  • 第24题:

    单选题
    从1,2,…,9共九个数字中任取一个数字,取出数字为偶数的概率为(  ).
    A

    0      

    B

    1      

    C

    5/9     

    D

    4/9


    正确答案: B
    解析: 9个数。偶数的个数是4个