更多“如图,在四边形ABCD中,∠ABC=90°,CD⊥AD,AD2+CD2=2AB2. ”相关问题
  • 第1题:

    对边相等,对角相等的凸四边形,是平行四边形吧?

    方法①∠B小于90°;

    左上为A,左下为B,右下为C,右上为D;

    已知∠B=∠D;AB=CD;

    证明:过A作AN⊥BC于N;

          过C作CM⊥AD于M;

          连接AC

    ∵AN⊥BC;CM⊥AD

    ∴∠ANB=∠DMC=90°

    又∵∠B=∠D;AB=CD

    ∴△ANB=△DMC(AAS)

    ∴AN=CM;BN=DM

    又∵∠ANB=∠DMC=90°,AC=AC

    ∴△ACD=△AMD(HL)

    ∴AM=DN

    又∵BN=DM

    ∴BD=AC

    ∵BD=AC;AB=CD

    ∴凸四边形ABCD为平行四边型。

    方法②∠B大于90°

    左上为A,左下为B,右下为C,右上为D;

    已知∠B=∠D;AB=CD;

    证明:延长CD,过A作AN⊥BC于N;

          延长AB,过C作CM⊥AD于M;

          连接AC

    ∵AN⊥BC;CM⊥AD

    ∴∠ANB=∠DMC=90°

    又∵∠B=∠D;AB=CD

    ∴△ANB=△DMC(AAS)

    ∴AN=CM;BN=DM

    又∵∠ANB=∠DMC=90°,AC=AC

    ∴△ACD=△AMD(HL)

    ∴AM=DN

    又∵BN=DM

    ∴BD=AC

    ∵BD=AC;AB=CD

    ∴凸四边形ABCD为平行四边型。

    方法③∠B等于90°

    证明:∵∠B=∠D=90°;AB=CD;AC=AC

    ∴△ABC=△ADC(HL)

    ∴AB=CB

    ∵BD=AC;AB=CD

    ∴凸四边形ABCD为平行四边型。

    有错吗?若我的证明有错请明示,我知道有个反例,但它是凹四边形。


    是平行四边形

  • 第2题:

    如图,四边形ABCD中,AB=10,AD=m,∠D=60o,以AB为直径作⊙O。
    (1)求圆心0到CD的距离(用含m的代数式表示);
    (2)当m取何值时,CD与⊙0相切?


    答案:
    解析:

  • 第3题:

    如图,D是△ABC内的一点,BD⊥CD,AD=6,BD=8,CD=6,E,F,G,H分别是AB,AC,CD, BD的中点.则四边形EFGH的周长是()。

    A.12
    B.14
    C.15
    D.16

    答案:D
    解析:
    因为BD⊥CD,BD=8,CD=6,由勾股定理可知BC=10。由三角形中位线定理可知EH=FG=

  • 第4题:

    如图,已知一个四边形中边AD长为3cm,边BC长7cm;∠DAB=135°,∠ABC=∠ADC=90°那么这个四边形的面积是( )cm2。




    答案:D
    解析:
    第一步,本题考查几何问题,用割补平移法解题。
    第二步,作BA和CD的延长线交于E,如图所示,得到三角形EBC和ADE。容易知道所求四边形ABCD面积等于△EBC面积减去△ADE面积。由题意∠DAB=135°,∠ABC=∠ADC=90°,可以求得∠DCB=360°-135°-90°×2=45°,且∠BEC=∠EAD=45°,所以△EBC和△ADE都是等腰直角三角形。
    第三步,因为AD长3cm,BC长7cm,则BE=BC=7cm,DE=AD=3cm,所以


  • 第5题:

    如图,平行四边形ABCD,∠ADC的角平分线DE交BC于E,且AD=14,DC=9,则BE/EC的值为()。

    A.1/3
    B.4/9
    C.5/9
    D.2/3

    答案:C
    解析:
    AD∥BC,则∠ADE=∠DEC,又∠ADE=∠CDE,所以△CDE为等腰三角形,EC=CD=9,

  • 第6题:

    ,在四边形ABCD中,AB//CD,AB与CD的边长分别为4和8,若ABE的面积为4,则四边形ABCD的面积为( )

    A.24
    B.30
    C.32
    D.36
    E.40

    答案:D
    解析:

  • 第7题:

    如图7,在四边形ABCD中,AD∥BC,要使四边形ABCD为平行四边形,则应添加的条件是__________(添加一个条件即可)。


    答案:
    解析:

  • 第8题:

    如图8,四边形ABCD内接于⊙O,若∠BCD=130o,则∠BOD=_______°。


    答案:
    解析:
    100

  • 第9题:

    如图,平行四边形ABCD的面积是54平方厘米,点E、F、G分别是平行四边形ABCD边上的中点,H为AD边上的任意一点,则阴影部分的面积为( )平方厘米。


    A. 27
    B. 28
    C. 32
    D. 36

    答案:A
    解析:
    方法一:如图所示,由于H为AD边上的任意一点,假设H点与A点重叠,则左边阴影为三角形ABF,其面积为三角形ABC的一半;右边阴影为三角形ADG,其面积为三角形ACD的一半。因此题目所求为平行四边形ABCD面积的一半,平行四边形ABCD的面积是54平方厘米,则阴影部分面积为27平方厘米。因此,本题答案为A选项。



    方法二:如图所示,连接BH和CH,由于点E、F、G分别是平行四边形ABCD边上的中点,则三角形AEH和BEH相等,三角形BFH和CFH相等,三角形CGH和DGH相等,因此题目所求的阴影部分为平行四边形ABCD的一半。平行四边形ABCD的面积是54平方厘米,则阴影部分面积为27平方厘米。因此,本题答案为A选项。

  • 第10题:

    如图在ΔABC中,DE∥BC,若AD:DB=1:3,DE=2,则BC等于( )。

    A.8
    B.6
    C.4
    D.2

    答案:A
    解析:
    由于DE∥BC,所以DE:BC=AD:AB,又由AD:DB=1:3,所以AD:AB=1:4,由DE=2得BC=8。

  • 第11题:

    如图,在一张矩形纸片ABCD中,AB=4,BC=8。点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点日处,点D落在G处,有以下四个结论:①四边形CFHE是菱形;②EC平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点H与点A重合时, 。以上结论中,你认为正确的有( )个。

    A.1
    B.2
    C.3
    D.4

    答案:C
    解析:

  • 第12题:

    在VFP命令窗口输入?“ABC”$”ABCD”,结果是()

    • A、”ABABCD”
    • B、“CD”
    • C、T
    • D、F

    正确答案:C

  • 第13题:

    下面程序的输出结果是( )。 char s()="ABCD",*p; main() { for(p=s;p<s+4;p++)printf("%s\n",p); )

    A.ABCD BCD CD D

    B.A B C D

    C.D C B A

    D.ABCD ABC AB A


    正确答案:A
    解析:p为指针型变量。第一次循环,p=s,p的值为字符数组s的首地址,输出字符串"ABCD"。p++,第二次循环,p的值为字符数组s的首地址加1,输出字符串"BCD"。p++,第三次循环,p的值为字符数组s的首地址加2,输出字符串"CD"。p++,第4次循环,p的值为字符数组s的首地址加3,输出字符串'D"。

  • 第14题:

    如图,四边形ABCD与四边形DEFG都是矩形,顶点F在BA的延长线上,边DG与AF交于点H,AD=4,DH=5,EF=6,求FG的长.


    答案:
    解析:
    解:∵四边形ABCD和四边形DEFG均为矩形,
    ∴∠DAF=∠DAB=90°,∠G=90°,DG=EF.
    ∵EF=6,DH=5,∴GH=DG-DH=EF-DH=6-5=1
    在Rt△ADH中,AD=4,DH=5,

  • 第15题:

    如右图,在直角梯形ABCD中,AB,∥CD,AD⊥CD,AB=1cm,AD=6cm,CD=9cm,则BC=________cm.



    答案:
    解析:

  • 第16题:

    如图,平面四边形ABCD中,AB=2,BC=4,CD=5,DA=3,
    (1)若∠B与∠D互补,求AC2的值;
    (2)求平面四边形ABCD面积的最大值。


    答案:
    解析:

  • 第17题:

    如图,已知一个四边形中边AD长为3cm,边BC长7cm;∠DAB=135°,∠ABC=∠ADC=90°那么这个四边形的面积是( )。


    A.49/4
    B.21
    C.
    D.20


    答案:D
    解析:

  • 第18题:

    如图6-9所示,在△ABC中,AD⊥BC于D点,BD=CD,若BC=6,AD=5,则图中阴影部分的面积为( )

    A.3
    B.7.5
    C.15
    D.30
    E.5.5

    答案:B
    解析:

  • 第19题:

    如图5,在△ABC中,∠ABC=90o,∠CBD=40o,AC∥BD,则∠A=__________度。


    答案:
    解析:
    50

  • 第20题:

    如图,等腰梯形ABCD中,AD∥BC,AD=5,AB=6,BC=8, AB∥DE,求△DEC的周长。


    答案:
    解析:
    15

  • 第21题:

    如图所示,在△ABC中,AD是∠BAC的平分线,AD = 15,AC=12,CD=9,则点D到AB边的距离是( )。
    A. 12 B. 10
    C. 9 D.无法确定


    答案:C
    解析:

  • 第22题:

    如图,平行四边形ABCD,∠ADC的角平分线DE交BC于E,且AD=14,DC=9,




    答案:C
    解析:

  • 第23题:

    如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90o,E是CD的中点。
    (1)证明:CD⊥平面PAE;
    (2)若直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等,求四棱锥P-ABCD的体积。


    答案:
    解析: