第6题:
问答题
若以A(k)表示函数y=x2-2kx在[-1,2]上的最大值与最小值之差,试求A(k)的最小值(-∞<k<+∞)。
正确答案:
根据题意可设,f(x)=x2-2kx,(-1≤x≤2),则f′(x)=2(x-k)。
当k≥2时,f′(x)=2(x-k)<0(x≠2),则f(x)在[-1,2]上单调减少,则其最大值与最小值之差为A(k)=(1+2k)-(4-4k)=6k-3,A′(k)=6>0。则k≥2时,A(k)单调增加。
当-1≤k<2时,令f′(x)=2(x-k)=0,得x=k,而f″(k)=2>0,则f(x)在x=k处取得极小值f(k)=-k2,也是其最小值。又f(2)=4-4k,f(-1)=1+2k。
若4-4k>1+2k⇒k<1/2,即-1f(-1),则f(2)=4-4k为函数的最大值。此时A(k)=(4-4k)-(-k2)=k2-4k+4,A′(k)=2k-4<0,即A(k)在[-1,1/2]上单调减少;
若4-4k<1+2k⇒k>1/2,即1/22)=k2+2k+1,A′(k)=2k+2>0,则A(k)在[1/2,2]上单调增加;
若k=1/2,则A(k)在k=1/2处取得极小值A(1/2)=9/4。
当k<-1时,f′(x)=2(x-k)>0,f(x)在[-1,2]上单调增加,其最大值与最小值之差为A(k)=f(2)-f(-1)=(4-4k)-(1+2k)=3-6k。则A′(k)=-6<0,k<-1时,A(k)单调减少。
综上所述,A(k)在k=1/2处取得最小值A(1/2)=9/4。
解析:
暂无解析