设随机变量X与Y相互独立, 且X服从指数分布Exp(1), Y服从Gamma分布Ga(2,1). 设p(x,y)是(X,Y)的联合概率密度函数, 则p(1,1)=____.(保留至小数点后三位.)

题目

设随机变量X与Y相互独立, 且X服从指数分布Exp(1), Y服从Gamma分布Ga(2,1). 设p(x,y)是(X,Y)的联合概率密度函数, 则p(1,1)=____.(保留至小数点后三位.)


相似考题
更多“设随机变量X与Y相互独立, 且X服从指数分布Exp(1), Y服从Gamma分布Ga(2,1). 设p(x,y)是(X,Y)的联合概率密度函数, 则p(1,1)=____.(保留至小数点后三位.)”相关问题
  • 第1题:

    设随机变量X与Y相互独立且都服从参数为A的指数分布,则下列随机变量中服从参数为2λ的指数分布的是().

    A.X+y
    B.X-Y
    C.max{X,Y}
    D.min{X,Y}

    答案:D
    解析:

  • 第2题:

    设随机变量(X,Y)的联合密度函数为f(x,y)=(1)求P(X>2Y);(2)设Z=X+Y,求Z的概率密度函数.


    答案:
    解析:

  • 第3题:

    设随机变量X,Y相互独立且都服从二项分布B(n,p),则P{min(X,Y)=0}=_______.


    答案:
    解析:
    令A=(X=0),B=(Y=0),则P{min(X,Y)=0)=P(A+B)=P(A)+P(B)-P(AB)

  • 第4题:

    设随机变量X在区间(0,1)内服从均匀分布,在X=x(0  (Ⅰ)随机变量X和Y的联合概率密度;
      (Ⅱ)Y的概率密度;
      (Ⅲ)概率P{X+Y>1}.


    答案:
    解析:
    【简解】本题是数四2004年考题,考查均匀分布,二维随机变量的概率密度、边缘密度和条件密度,当年的得分率仅为0.204.主要的困难在于对条件概率密度的理解.

  • 第5题:

    设二维随机变量(X,Y)服从正态分布N(1,0;1,1;0),则P{XY-Y<0}=_________.


    答案:
    解析:
    (X,Y)~N(1,0;1,1;0),所以X与Y相互独立,且X~N(1,1),Y~N(0,1)也就有(X-1)~N(0,1)与Y相互独立,再根据对称性:P{X-1<0}=P{X-1>0}=P(Y<0)=P{Y>0}=.不难求出P{XY-Y<0}的值.

  • 第6题:

    设随机变量X与Y相互独立,且X服从标准正态分布N(0,1),Y的概率分布为P{Y=0}=P{Y=1}=.记Fz(z)为随机变量Z=XY的分布函数,则函数Fz(z)的间断点个数为

    A.A0
    B.1
    C.2
    D.3

    答案:D
    解析:

  • 第7题:

    设随机变量X与Y相互独立,X的概率分布为P{X=1}=P{X=-1}=,Y服从参数为λ的泊松分布.令Z=XY.
      (Ⅰ)求Cov(X,Z);
      (Ⅱ)求Z的概率分布.


    答案:
    解析:

  • 第8题:

    设随机变量X,Y相互独立,且X~N(μ,σ2),Y在[a,b]区间上服从均匀分布,则D(X-2Y)=()。



    答案:A
    解析:

  • 第9题:

    设随机变量X与Y相互独立且都服从区间[0,1]上的均匀分布,则下列随机变量中服从均匀分布的有()。

    • A、X2
    • B、X+Y
    • C、(X,Y)
    • D、X-Y

    正确答案:C

  • 第10题:

    设随机变量X与Y相互独立,X~π(2),Y~π(3),则P{X+Y≤1}=()。


    正确答案:6e-5

  • 第11题:

    设随机变量X和Y相互独立,且X~N(0,1),Y~N(1,1),则()

    • A、P{X+Y≤0}=0.5
    • B、P{X+Y≤1}=0.5
    • C、P{X-Y≤0}=0.5
    • D、P{X-Y≤1}=0.5

    正确答案:B

  • 第12题:

    设随机变量X与Y相互独立,已知X服从区间(1,5)上的均匀分布,Y服从参数λ=5的指数分布,则D(3X-5Y)等于().

    • A、5
    • B、9
    • C、10
    • D、13

    正确答案:D

  • 第13题:

    设随机变量X和Y都服从正态分布,则().

    A.X+Y一定服从正态分布
    B.(X,Y)一定服从二维正态分布
    C.X与Y不相关,则X,Y相互独立
    D.若X与Y相互独立,则X-Y服从正态分布

    答案:D
    解析:
    若X,Y独立且都服从正态分布,则X,Y的任意线性组合也服从正态分布,选(D).

  • 第14题:

    设X,Y相互独立且都服从(0,2)上的均匀分布,令Z=min{X,Y},则P(0

    答案:
    解析:
    由X,Y在(0,2)上服从均匀分布得  
    因为x,Y相互独立,所以
      Fz(z)=P(Z≤z)=1-P(Z>z)=1-P(min{X,Y)}>z)=1-P(X>z,Y>z)
      =1-P(X>z)P(Y>z)=1=【1-P(X≤z)】【1-P(Y≤z)】
      =1-【1-Fx(z)】【1-FY(z)】,

  • 第15题:

    设随机变量X,Y相互独立,且X~N(0,4),Y的分布律为Y~.则P(X-1-2Y≤4)=_______.


    答案:1、0.46587
    解析:
    p(X+2Y≤4)=P(Y=1)P(X≤4-2Y|Y=1)+P(Y=2)P(X≤4-2Y|Y=2)+P(Y=3)P(X≤4-2Y|Y=3)

  • 第16题:

    随机变量X与Y相互独立,X服从参数为1的指数分布,Y的概率分布为。求Z的概率密度


    答案:
    解析:

  • 第17题:

    设随机变量X与Y相互独立,且分别服从参数为1与参数为4的指数分布,则P{X


    答案:A
    解析:
    X~E(1),Y~E(4)且相互独立,所以(X,Y)的概率密度  
      利用公式可以计算出结果.
      【求解】

  • 第18题:

    设随机变量X与Y相互独立,X服从参数为1的指数分布,Y的概率分布为P{Y=-1}=p,P{Y=1)=1-p,(0  (Ⅰ)求Z的概率密度;
      (Ⅱ)p为何值时,X与Z不相关;
      (Ⅲ)X与Z是否相互独立?


    答案:
    解析:

  • 第19题:

    设随机变量X,Y相互独立,且X的概率分布为P{X=0)=P{X=2)=,Y的概率密度为
      (Ⅰ)求P{Y≤EY};
      (Ⅱ)求Z=X+Y的概率密度.


    答案:
    解析:

  • 第20题:

    设随机变量X与Y相互独立,且X在区间[0,2]上服从均匀分布,Y服从参数为3的指数分布,则数学期望E(XY)等于()。

    • A、1
    • B、3

    正确答案:D

  • 第21题:

    设二维随机变量(X,Y)在区域D上服从均匀分布,其中D://0≤x≤2,0≤y≤2。记(X,Y)的概率密度为f(x,y),则f(1,1)=()


    正确答案:0.25

  • 第22题:

    设随机变量X与Y相互独立,且X~N(2,22),Y~N(-1,1),则P{|2X+3Y-1|≤9.8}=()。


    正确答案:0.95

  • 第23题:

    设随机变量X,Y相互独立,且均服从[0,1]上的均匀分布,则服从均匀分布的是()。

    • A、XY
    • B、(X,Y)
    • C、X—Y
    • D、X+Y

    正确答案:B

  • 第24题:

    问答题
    设随机变景X与Y相互独立,且X服从[0,1]上的均匀分布,y服从λ=1的指数分布,  求:(1)X与Y的联合分布函数.  (2)X与y的联合概率密度函数.  (3)P{X≥Y}.

    正确答案:
    解析: