更多“水平管以角速度w绕铅垂轴Z转动。管内有一小球M以速度V=rw沿管运动,r为小球到转轴的距离。球M的绝对速度是( )。 ”相关问题
  • 第1题:

    细管OB以角速度ω,角加速度α绕O轴转动,一小球A在管内以相对速度



    由O向B运动,动坐标同结于OB管上。图示瞬时,小球A的牵连加速度为( )。






    答案:A
    解析:
    对小球而言牵连运动指管绕O轴的转动

  • 第2题:

    图示均质圆轮,质量为m,半径为r,在铅垂图面内绕通过圆盘中心O的水平轴转动,角速度为ω,角加速度为ε,此时将圆轮的惯性力系向O点简化,其惯性力主矢和惯性力主矩的大小分别为(  )。




    答案:C
    解析:

  • 第3题:

    均质圆盘质量为m,半径为R,在铅垂面绕内O轴转动,图示瞬间角速度为ω,则其对O轴的动量矩大小为(  )。

    A.mRω
    B.mRω/2
    C.mR2ω/2
    D.3mR2ω/2

    答案:D
    解析:
    根据质点的动量矩公式,体系对O点的动量矩为:

  • 第4题:

    忽略质量的细杆OC=l,其端部固结匀质圆盘圆心,盘质量为m,半径为r。系统以角速度w绕轴O转动。系统的动能是:



    答案:D
    解析:
    此为定轴转动刚体,动能表达式为,其中Jc为刚体通过质心且垂直于运动平面
    的轴的转动惯量。
    此题中,,带入动能表达式,选(D)。

  • 第5题:

    如图所示圆环以角速度ω绕铅直轴AC自由转动,圆环的半径为R,对转轴的转动惯量为I;在圆环中的A点放一质量为m的小球,设由于微小的干扰,小球离开A点。忽略一切摩擦,则当小球达到B点时,圆环的角速度是(  )。




    答案:B
    解析:

  • 第6题:

    如图所示质量为m、长为l的均质杆OA绕O轴在铅垂平面内作定轴转动。已知某瞬时杆的角速度为ω,角加速度为α,则杆惯性力系合力的大小为(  )。


    答案:B
    解析:

  • 第7题:

    忽略质量的细杆OC=l,其端部固结匀质圆盘。杆上点C为圆盘圆心。盘质量为m,半径为r。系统以角速度ω绕轴O转动。系统的动能是:



    答案:D
    解析:
    提示:圆盘绕轴O作定轴转动,其动能为T=1/2JOω2。

  • 第8题:

    图示均质圆轮,质量为m,半径为r,在铅垂图面内绕通过圆盘中心O的水平轴转动,角速度为w,角加速度为ε,此时将圆轮的惯性力系向O点简化,其惯性力主矢和惯性力主矩的大小分别为:


    答案:C
    解析:
    根据 定轴转动刚体惯性力系的简化结果,惯性力主矢和主矩的大小分别为F1=mac,MIO=JOa。

  • 第9题:

    图4-67示均质圆轮,质量为m,半径为r,在铅垂图面内绕通过圆轮中心O的水平轴以匀角速度ω转动。则系统动量、对中心O的动量矩、动能的大小为( )。



    答案:A
    解析:
    提示:根据动量、动量矩、动能的定义,刚体作定轴转动时,ρ = mvc、LO= JOω, T=1/2JOω2。

  • 第10题:

    刚体以角速度ω,角加速度ε绕定轴转动则在其转动半径为r处的线速度v=(),切线加速度at=(),法向加速度an=()。


    正确答案:ωr;εr;ω2r

  • 第11题:

    一质量为M,半径为R的飞轮绕中心轴以角速度ω作匀速转动,其边缘一质量为m的碎片突然飞出,则此时飞轮的()。

    • A、角速度减小,角动量不变,转动动能减小
    • B、角速度增加,角动量增加,转动动能减小
    • C、角速度减小,角动量减小,转动动能不变
    • D、角速度不变,角动量减小,转动动能减小

    正确答案:D

  • 第12题:

    均质圆盘质量为m,半径为R,在铅垂平面内绕O轴转动,图示瞬时角速度为ω,则其对O轴的动量矩和动能大小分别为:



    答案:D
    解析:

  • 第13题:

    图示质量为m、长为l的杆OA以的角速度绕轴O转动,则其动量为:



    答案:C
    解析:
    提示:根据动量的公式:p=mvc。

  • 第14题:

    忽略质量的细杆OC=l,其端部固结匀质圆盘。杆上点C为圆盘圆心。盘质量为m,半径为r。系统以角速度ω绕轴O转动,如图所示。系统的动能是:



    答案:D
    解析:

  • 第15题:

    均质圆盘质量为m,半径为R,再铅垂面内绕o轴转动,图示瞬吋角速度为w,则其对o轴的动量矩和动能的大小为:


    答案:C
    解析:
    解:选C

  • 第16题:

    图示均质圆轮,质量为m,半径为r,在铅垂图面内绕通过圆轮中心O的水平轴以匀角速度ω转动。则系统动量、对中心O的动量矩、动能的大小为:



    答案:A
    解析:
    提示:根据动量、动量矩、动能的定义,刚体做定轴转动时p=mvc, LO=JOω,T=1/2JOω2。

  • 第17题:

    均质细直杆OA长为l ,质量为m,A端固结一质置为m的小球(不计尺寸),如图所示。当OA杆以匀角速度w绕O轴转动时,该系统时O轴的动量矩为:


    答案:D
    解析:

  • 第18题:

    图示曲柄连杆机构中,OA=r,AB=2r,OA、AB及滑块B质量均为m,曲柄以ω的角速度绕O轴转动,则此时系统的动能为:



    答案:A
    解析:
    提示:杆AB瞬时平移,杆OA做定轴转动,滑块B为质点,分别根据动能的定义求解。

  • 第19题:

    如图4-48所示直角弯杆OAB以匀角速度ω绕O轴转动,并带动小环M沿OD杆运动。已知OA=l,取小环M为动点,OAB杆为动系,当 φ =60°时,M点牵连加速度ae的大小为( )。



    答案:D
    解析:

  • 第20题:

    如图4-57所示质量为m、长为l 的杆OA以ω的角速度绕轴O转动,则其动量为 ( )。



    答案:C
    解析:
    提示:根据动量的公式ρ =mvc。

  • 第21题:

    一飞轮以角速度ω0绕光滑固定轴旋转,飞轮对轴的转动惯量为J1;另一静止飞轮突然和上述转动的飞轮啮合,绕同一转轴转动,该飞轮对轴的转动惯量为前者的二倍,啮合后整个系统的角速度ω=()。


    正确答案:(1/3)ω0

  • 第22题:

    单选题
    质量为2m,半径为R的偏心圆板可绕通过中心O的轴转动,偏心距OC= 。在OC连线上的A点固结一质量为m的质点,OA=R如图示。当板以角速度w绕轴O转动时,系统动量K的大小为()。(注:C为圆板的质心)。
    A

    K=0

    B

    K=mRw

    C

    K=mRw

    D

    K=2mRw


    正确答案: A
    解析: 暂无解析