更多“均质细直杆AB长为l,质量为m,以匀角速度ω绕O轴转动,如图所示,则AB杆的动能为: ”相关问题
  • 第1题:

    T形均质杆OABC以匀角速度ω绕O轴转动,如图所示。已知OA杆的质量为2m,长为2l,BC杆质量为m,长为l,则T形杆在该位置对O轴的动量矩为:




    答案:C
    解析:
    提示:动量矩 LO=JOω,其中JO=JO(OA)+ JO(BC)。

  • 第2题:

    忽略质量的细杆OC=l,其端部固结匀质圆盘。杆上点C为圆盘圆心。盘质量为m,半径为r。系统以角速度ω绕轴O转动,如图所示。系统的动能是:



    答案:D
    解析:

  • 第3题:

    图示均质杆AB的质量为m,长度为L,且O1A = O2B=R,O1O2=AB=L。当φ=60°时,O1A杆绕O1轴转动的角速度为ω,角加速度为α,此时均质杆AB的惯性力系向其质心C简化的主矢FI和主矩MIC的大小分别为:

    A. FI=mRα ,MIC=1/3mL2α B. FI=mRω2 ,MIC = 0


    答案:C
    解析:
    提示:AB是平动刚体。

  • 第4题:

    均质细直杆OA的质量为m,长为l,以匀角速度W绕O轴转动如图所示,此时将OA杆的惯性力系向O点简化。其惯性力主矢和惯性力主矩的数值分别为(  )。




    答案:D
    解析:

  • 第5题:

    均质细直杆OA长为ι,质量为m,A端固结一质量为m的小球(不计尺寸),如图所示。当OA杆以匀角速度绕O轴转动时,该系统对O轴的动量矩为:



    答案:D
    解析:

  • 第6题:

    图示匀质杆AB长l,质量为m。点D距点A为1/4l。杆对通过点D且垂直于AB的轴y的转动惯量为:



    答案:A
    解析:
    提示:应用转动惯量的移轴定理。

  • 第7题:

    如图所示质量为m、长为l的均质杆OA绕O轴在铅垂平面内作定轴转动。已知某瞬时杆的角速度为ω,角加速度为α,则杆惯性力系合力的大小为(  )。


    答案:B
    解析:

  • 第8题:

    忽略质量的细杆OC=l,其端部固结匀质圆盘。杆上点C为圆盘圆心。盘质量为m,半径为r。系统以角速度ω绕轴O转动。系统的动能是:



    答案:D
    解析:
    提示:圆盘绕轴O作定轴转动,其动能为T=1/2JOω2。

  • 第9题:

    匀质杆OA质量为M,长为l,角速度为ω,如图所示。则其动量大小为:


    答案:A
    解析:
    提示 应用牛顿第二定律。

  • 第10题:

    质量为m,长为2l的均质细杆初始位于水平位置,如图4-68所示。A端脱落后, 杆绕轴B转动,当杆转到铅垂位置时,AB杆B处的约束力大小为( )。



    答案:D
    解析:
    提示:根据动能定理,当杆转动到铅垂位置时,杆的ω2=3g/2l,α=0,根据质心运动定理mlω2=FBy-mg,FBx=0。

  • 第11题:

    如图4-57所示质量为m、长为l 的杆OA以ω的角速度绕轴O转动,则其动量为 ( )。



    答案:C
    解析:
    提示:根据动量的公式ρ =mvc。

  • 第12题:

    均质细直杆AB长为l,质量为m,以匀角速度ω绕O轴转动,如图4-69所示, 则AB杆的动能为( )。



    答案:D
    解析:
    提示:定轴转动刚体的动能为T = 1/2JOω2。

  • 第13题:

    图示质量为m、长为l的杆OA以的角速度绕轴O转动,则其动量为:



    答案:C
    解析:
    提示:根据动量的公式:p=mvc。

  • 第14题:

    忽略质量的细杆OC=l,其端部固结匀质圆盘圆心,盘质量为m,半径为r。系统以角速度w绕轴O转动。系统的动能是:



    答案:D
    解析:
    此为定轴转动刚体,动能表达式为,其中Jc为刚体通过质心且垂直于运动平面
    的轴的转动惯量。
    此题中,,带入动能表达式,选(D)。

  • 第15题:

    如图,半径为R的圆轮以匀角速度作纯滚动,带动AB杆绕B作定轴转动,D是轮与杆的接触点,如图所示。若取轮心C为动点,杆BA为动坐标系,则动点的牵连速度为(  )。


    答案:C
    解析:

  • 第16题:

    图示均质细直杆AB长为l,质量为m,图示瞬时A点的速度为则AB杆的动量大小为:



    答案:D
    解析:
    质点系动量:,为各质点动量的矢量和,图示杆的质心在杆中端。

  • 第17题:

    均质直角曲杆OAB的单位长度质量为ρ,OA=AB=2l,图示瞬时以角速度ω、角加速度α绕轴O转动,该瞬时此曲杆对O轴的动量矩的大小为:



    答案:A
    解析:
    提示:根据定轴转动刚体的动量矩定义LO=JOω,JO=JOA+JAB。

  • 第18题:

    匀质杆AB 长l ,质量为m,质心为C。点D 距点A 为1/4,杆对通过点D 且垂直于AB 的轴y 的转动惯量为:



    答案:A
    解析:
    转动惯量,又称惯性矩(俗称惯性力距、易与力矩混淆),通常以 I 表示,SI 单位为 kg * m2,可说是一个物体对于旋转运动的惯性。对于一个质点,I = mr2,其中 m 是其质量,r 是质点和转轴的垂直距离。

  • 第19题:

    均质细直杆OA长为l ,质量为m,A端固结一质置为m的小球(不计尺寸),如图所示。当OA杆以匀角速度w绕O轴转动时,该系统时O轴的动量矩为:


    答案:D
    解析:

  • 第20题:

    T形均质杆OABC以匀角速度ω绕O轴转动,如图所示。已知OA杆的质量为2m,长为2l,BC杆质量为m,长为l,则T形杆在图示位置时动量的大小为:



    答案:C
    解析:
    提示:动量 p=∑mivci=(2m?lω+m?2lω)j。

  • 第21题:

    均质细直杆长为l,质量为m,图示瞬时点A处的速度为v,则杆AB的动量大小为:


    答案:D
    解析:
    提示 动量的大小等于杆AB的质量乘以其质心速度的大小。

  • 第22题:

    均质细直杆OA长为l,质量为m,A端固结一质量为m的小球(不计尺寸),如图4-76所示。当OA杆以匀角速度ω绕O轴转动时,该系统对O轴的动量矩为()。

    A. 1/3ml2ω B. 2/3ml2ω C. ml2ω D. 4/3ml2ω


    答案:D
    解析:

  • 第23题:

    如图4-65所示,忽略质量的细杆OC=l,其端部固结均质圆盘。杆上点C为圆盘圆心。盘质量为m。半径为r。系统以角速度ω绕轴O转动。系统的动能是( )。



    答案:D
    解析:
    提示:圆盘绕轴O作定轴转动,其动能为T=1/2JOω2。