假定某完全竞争市场的需求函数为Qd= 68 -4P,行业的短期供给函数为Qs= -12 +4P: (1)求该市场的短期均衡价格和均衡产量。 (2)在(1)的条件下,该市场的消费者剩余、生产者剩余和社会总福利分别是多少? (3)假定政府对每一单位商品征收2元的销售税,那么,该市场的短期均衡价格和均衡产量是多少?此外,消费者剩余、生产者剩余和社会总福利的变化又分别是多少?

题目
假定某完全竞争市场的需求函数为Qd= 68 -4P,行业的短期供给函数为Qs= -12 +4P: (1)求该市场的短期均衡价格和均衡产量。 (2)在(1)的条件下,该市场的消费者剩余、生产者剩余和社会总福利分别是多少? (3)假定政府对每一单位商品征收2元的销售税,那么,该市场的短期均衡价格和均衡产量是多少?此外,消费者剩余、生产者剩余和社会总福利的变化又分别是多少?


相似考题
更多“假定某完全竞争市场的需求函数为Qd= 68 -4P,行业的短期供给函数为Qs= -12 +4P: (1)求该市场的短期均衡价格和均衡产量。 (2)在(1)的条件下,该市场的消费者剩余、生产者剩余和社会总福利分别是多少? (3)假定政府对每一单位商品征收2元的销售税,那么,该市场的短期均衡价格和均衡产量是多少?此外,消费者剩余、生产者剩余和社会总福利的变化又分别是多少?”相关问题
  • 第1题:

    假定某完全竞争行业有100个相同的厂商,单个厂商的短期总成本函数为.STC=Q2+6Q +20。 (l)求市场的短期供给函数。 (2)假定市场的需求函数为Qd=420 - 30P,求该市场的短期均衡价格和均衡产量。 (3)假定政府对每一单位商品征收1.6元的销售税,那么,该市场的短期均衡价格和均衡产量是多少?消费者和厂商各自负担多少税收?


    答案:
    解析:
    (1)单个厂商的边际成本MC =2Q +6。 由短期均衡条件可知P= MC,即P=2Q +6, 即Q =0.5P-3。 故市场的短期供给函数为Qs=100Q= 50P - 300。 (2)联立供给函数与需求函数,可得P=9,Q=150。 (3)征税后,联立函数:

    解得Pd=10,Q=120。 故市场短期均衡价格为10,均衡产量为120。 消费者承担1元税收,厂商承受0.6元税收。

  • 第2题:

    假定对菜花的需求函数为Q =1000 -5P,菜花的长期供给曲线为Q=4P - 80,政府对每单位菜花征收45元的税收,问: (1)这种税收会对市场均衡产生什么影响? (2)这种税收负担会怎样在菜花的卖者与买者之间分担? (3)这种税收将使消费者剩余和生产者剩余发生怎样的变化?


    答案:
    解析:

  • 第3题:

    已知某完全竞争行业中的单个厂商的短期成本函数为STC =0.1Q3- 2Q2+150 +10 . (1)求当市场上产品的价格为P=55时,厂商的短期均衡产量和利润。 (2)当市场价格下降为多少时,厂商必须停产? (3)求厂商的短期供给函数。


    答案:
    解析:

  • 第4题:

    假设某完全竞争行业有500个相同的厂商,每个厂商的短期成本函数为:STC=O. 5Q2+Q+10。 (1)求完全竞争市场的短期供给函数。 (2)假设市场需求函数为QD=4 000-400P,求市场的均衡价格和产量。 (3)假定对每一件产品征收0.9元的税,新的市场均衡价格和产量又为多少?厂商和消费者的税收负担各为多少?


    答案:
    解析:
    (1)单个厂商的边际成本函数为:MC=Q+1,因此单个厂商的短期供给函数为 P=MC=Q+l,市场短期供给函数为Qs =500(P-1)。 (2)联立供给函数与需求函数: Qs=500(P-l) QD=4 000 - 400P Qs=QD 解得市场的均衡价格和产量分别为P=5,Q=2 000。 (3)假设对生产者征税。从量税为r=0.9。联立新的供给函数与需求函数: Qs =500(P-r-l) QD=4 000_400P Qs=QD 解得新的市场均衡价格和产量为P7—5.5,Q,=1 800。 厂商获得的价格为P'-r=4.6。厂商的税收负担为(5-4.6)×1 800=720,消费者的税收负担为(5. 5-5)×1 800=900。

  • 第5题:

    A企业生产矿泉水,其所在的市场为完全竞争市场。A的短期成本函数为C(q)=20+5q十q2,其中20为企业的固定成本。 (1)请推导出A企业的短期供给曲线。 (2)当市场价格为15时,短期均衡的利润为多少?此时的生产者剩余是多少? (3)若产量大于0时,长期成本函数C(q) =9+4q+q2,则长期均衡的产出是多少?长期均衡的利润为多少?


    答案:
    解析:

  • 第6题:

    假设某商品需求函数为Q=100-2P,供给函数为Q=20+6P。 (1)该商品的市场均衡价格和销售量是多少? (2)如果政府对该商品征收每单位商品4元的数量税,市场均衡的销售量是多少?消费者支付的价格和生产商接受的价格分别是多少?税收负担如何分配? (3)如果商品供给函数变为Q= 40+6P,题目(1)和(2)中的答案该如何变化?


    答案:
    解析:
    (1)联立需求函数和供给函数可得:100-2P=20+6P解得:均衡价格P=10。将P=10代入需求函数或供给函数可得销售量为80。 (2)如果政府对该商品征收每单位商品4元的数量税,均衡条件应满足

    联立以下四个方程:

    即市场均衡的销售量为74,消费者支付的价格为每单位13元,生产商接受的价格为每单位9元。每单位商品4元的税,其中消费者承担3元,生产者承担1元。 (3)联立需求函数和供给函数可得:100-2P=40+6P解得:均衡价格P=7.5。将P=7.5代入需求函数或供给函数可得销售量为85。如果政府对该商品征收每单位商品4元的数量税,均衡条件应满足PD—PS+4。联立以下四个方程:

    即市场均衡的销售量为79,消费者支付的价格为每单位10.5元,生产商接受的价格为每单位6.5元。每单位商品4元的税,其中消费者承担3元,生产者承担1元。 可以看出,由于供给曲线斜率不变,所以税负的转嫁程度不变,因为税负的转嫁程度取决于需求曲线和供给曲线的斜率。

  • 第7题:

    假设完全竞争市场的需求函数和供给函数分别为QD=5000-200P和QS=4000+300P。计算市场均衡价格和均衡产量。


    正确答案: 市场均衡时,QD=QS,即:5000-200P=4000+300P
    求得:均衡价格P=2,均衡产量Q=4600

  • 第8题:

    已知某完全竞争行业中的单个厂商的短期成本函数为STC=0.1Q3—2Q2+15Q+10。试求:(1)当市场上产品的价格为P=55时,厂商的短期均衡产量和利润;(2)当市场价格下降为多少时,厂商必须停产;(3)厂商的短期供给函数。


    正确答案: (1)P=MR=55
    短期均衡时SMC=0.3Q2-4Q+15=MR=55
    0.3Q2-4Q-40=0
    ∴Q=20或Q=-20/3(舍去)
    利润=PQ-STC=55×20-(0.1×8000-2×400+15×20+10)=790
    (2)厂商停产时,P=AVC最低点。
    AVC=SVC/Q=(0.1Q3—2Q2+15Q)/Q=0.1Q2-2Q+15
    AVC最低点时,AVC′=0.2Q-2=0
    ∴Q=10
    此时AVC=P=0.1×100-2×10+15=5
    (3)短期供给函数为P=MC=0.3Q2-4Q+15(取P>5一段)

  • 第9题:

    计算题: 已知某商品在某市场特定时期的需求函数是:QD、=14—3P,供给函数为:QS=2+6P试求: (1)该商品的均衡价格和均衡数量。 (2)均衡时的需求价格弹性。 (3)该产品适合降价吗?为什么?


    正确答案: (1)把需求函数和供给函数联立方程组:QD、=14-3P
    QS=2+6P
    当Qs一%时的价格和成交量,即是均衡量和均衡价格
    则求解方程组,得:Q=10,P=4/3
    (2)令需求价格弹性为E,则在点(10,4/3)处得需求弹性为:
    E=一3X(4/3×1/10)=一0.4
    (3)因为E=一0.4>一1,
    所以,不适合降价。

  • 第10题:

    问答题
    假设完全竞争市场的需求函数和供给函数分别为QD=5000-200P和QS=4000+300P。计算市场均衡价格和均衡产量。

    正确答案: 市场均衡时,QD=QS,即:5000-200P=4000+300P
    求得:均衡价格P=2,均衡产量Q=4600
    解析: 暂无解析

  • 第11题:

    单选题
    若垄断者实施一级价格歧视,则下列论述中不正确的一项是()
    A

    垄断者的产量与完全竞争市场的均衡产量一样

    B

    此时生产者剩余等于完全竞争市场中的生产者剩余和消费者剩余之和

    C

    与完全竞争市场相较,垄断者的这一行为会导致社会福利的损失

    D

    垄断者清楚地知道消费者对每一单位商品所愿意支付的最高价格


    正确答案: D
    解析: 暂无解析

  • 第12题:

    问答题
    已知某完全竞争行业中的单个厂商的短期成本函数为:STC=0.1Q3-2Q2+15Q+10(1)当市场上产品价格为 55时厂商的短期均衡产量和利润;(2)当市场价格下降为多少时厂商必须停产?(3)求厂商的短期供给函数。

    正确答案:
    由短期成本函数可得厂商的短期边际成本函数为:SMC=0.3Q2-4Q+15。
    完全竞争厂商实现短期均衡时,有SMC=P,即0.3Q2-4Q+15=55,解得:Q=20。
    此时,利润为π=PQ-STC=55×20-(0.1×203-2×202+15×20+10)=790。
    即均衡产量为20,利润为790。
    解析: 暂无解析

  • 第13题:

    完全竞争市场中厂商长期成本函数为c(q)= 1000 +1Oq2(g>o),q=0,c=O.市场需求函数为p =1200 - 2q。 (1)求厂商长期供给函数。 (2)长期均衡时行业中有多少厂商? (3)求长期均衡时的消费者剩余。


    答案:
    解析:

  • 第14题:

    一个垄断企业面临两个分离的市场。市场1的需求函数为

    市场2的需求函数为

    垄断厂商生产的边际成本为1,不存在固定成本。 (1)假定垄断厂商可以实施三级价格歧视。求两个市场的利润最大化垄断价格和产量以及垄断厂商的总利润,两个市场的消费者剩余之和,以及总剩余之和。(总剩余定义为总消费者剩余加上总利润) (2)假定垄断厂商不能实施价格歧视而只能在两个市场收取统一的价格。求利润最大化的垄断价格和产量以及垄断厂商的总利润,两个市场的消费者剩余之和,以及总剩余之和。(提示:你需要确定垄断者在两个市场都销售是否是最优的) (3)对于本题中所描述的需求状况,三级价格歧视对社会有益吗?请加以解释。(注意:不能仅仅比较数值大小)


    答案:
    解析:
    (1)由已知可得两个市场的反需求函数分别为:

    对应的两个市场的边际收益分别为:

    若垄断厂商实施三级价格歧视,利用两个市场利润最大化原则



    (3)三级价格歧视下,厂商利润更大;在同一价格策略下,消费者剩余更大。但是,在三级价格歧视下,社会总剩余小于同一价格策略的社会总剩余。可以看出,实施三级价格歧视对于厂商和市场2的消费者是有益的,对于市场1的消费者是有害的。

  • 第15题:

    已知某完全竞争的成本递增行业的长期供给函数LS= 5500 +300P。试求: (1)当市场需求函数为D=8000 - 200P时,市场的长期均衡价格和均衡产量。 (2)当市场需求增加时,市场需求函数为D=10000 - 200P时,市场长期均衡价格和均衡产量。 (3)比较(1)和(2),说明市场需求变动对成本递增行业的长期均衡价格和均衡产量的影响。


    答案:
    解析:
    (1)根据在完全竞争市场长期均衡时的条件LS =D,即有5500 +300P= 8000 - 200P,解得Pe =5。 把Pe=5代入LS函数,得Q。=5500 +300×5=7000。 所以,市场的长期均衡价格和均衡数量分别为Pe=5、Qe=7000。 (2)同理,根据LS =D,有5500+ 300P =10000 - 200P,解得Pe=9。 以Pe=9代人LS函数,得Qe=5500 +300×9=8200。 所以,市场的长期均衡价格和均衡数量分别为Pe=9、Qe=8200。 (3)比较(1)和(2)可得,对于完全竞争的成本递增行业而言,市场需求增加,会使市场的均衡价格上升,即由Pe=5上升为Pe=9,市场的均衡数量也增加,即由Qe=7000增加为Qe=8200。也就是说,市场需求与均衡价格成同方向的变动,与均衡数量也成同方向的变动。

  • 第16题:

    考虑以下古诺竞争模型。市场中有N个企业,生产相同的产品,均没有生产成本。市场需求函数为P=a-bQ,其中a,b>0,Q为行业总产量。如果企业同时展开产量竞争,那么: (1)均衡时价格是多少? (2)此时消费者剩余是多少?


    答案:
    解析:
    本题超纲,但是严格意义上来说属于中央财大“801经济学”考生需要重点掌握的考点,虽然高鸿业《西方经济学(微观部分)》仅介绍了两个厂商的古诺模型,但是考生需要掌握多个厂商的古诺模型(从利润最大化入手)。 (1)代表性企业i的利润函数为:

  • 第17题:

    已知某完全竞争市场的需求函数为D= 6300 - 400P,短期市场供给函数为SS= 3000+150P;单个企业在LAC曲线最低点的价格为6,产量为50;单个企业的成本规模不变. (1)求市场的短期均衡价格和均衡产量。 (2)判断(1)中的市场是否同时处于长期均衡,求行业内的厂商数量: (3)如果市场的需求函数变为D’=8000 - 400P,短期供给函数为SS’= 4700 +150P,求市场的短期均衡价格和均衡产量。 (4)判断(3)中的市场是否同时处于长期均衡,并求行业内的厂商数量。 (5)判断该行业属于什么类型。 (6)需要新加入多少企业,才能提供由(1)到(3)所增加的行业总产量?


    答案:
    解析:
    (1)根据市场短期均衡的条件D=SS,有6300 - 400P= 3000 +150P,解得P=6。 以P=6代入市场需求函数,有Q=6300 - 400×6=3900。 所以,该市场短期均衡价格和均衡产量分别为P=6、Q=3900: (2)因为该市场短期均衡时的价格P=6,由题意可知,单个企业在LAC曲线最低点的价格也为6,所以,由此可以判断该市场也同时处于长期均衡。 由(1)可知市场长期均衡时的数量为Q=3900,由题意可知,在市场长期均衡时单个企业的产量为50,所以,由此可以求出市场长期均衡时行业内的厂商数量为3900÷50= 78。 (3)根据市场短期均衡的条件D’=SS’,有8000 - 400P’=4700 +150P’,解得P’=6。 以P’ =6代入市场需求函数,有Q’= 8000 - 400×6=5600。 或者以P’=6代人市场短期供给函数,有Q’=4700 +150×6=5600。 所以,该市场在变化了的供求函数条件下的短期均衡价格和均衡产量分别为P’=6、Q’=5600。 (4)与(2)的分析相类似,在市场需求函数和短期供给函数变化之后,该市场短期均衡时的价格P=6,由题意可知,单个企业在LAC曲线最低点的价格也是6,所以,由此可以判断该市场的这一短期均衡同时也是长期均衡。 因为由(3)可知,供求函数变化以后的市场长期均衡时的产量Q’=5600,由题意可知,在市场长期均衡时单个企业的产量为50,所以,由此可以求出市场长期均衡时行业内的厂商数量为5600÷50= 112。 (5)由以上分析和计算过程可知:在该市场供求函数发生变化前后的市场长期均衡时的均衡价格是不变的,均为P=6,而且单个企业在LAC曲线最低点的价格也是6。于是,我们可以判断该行业属于成本不变行业。以上(1)~(5)的分析与计算结果的部分内容如图6—6所示。

    (6)由(1)和(2)可知,(1)时的厂商数量为78;由(3)和(4)可知,(3)时的厂商数量为112。因此,由(1)到(3)所增加的厂商数量为112 - 78= 34:或者,也可以这样计算:由于从(1)到(3)市场长期均衡产量的增加量为AQ= 5600 - 3900=1700。由题意可知,单个企业长期均衡时的产量为Q=50,所以,为提供AQ =1700的新增产量,需要新加入的企业数量为1700÷50= 34。

  • 第18题:

    假设某一工业品交易市场为完全竞争市场,市场上的需求函数和供给函数分别为Qd=5000-50P和Qs=4000+200P。
    <1> 、市场均衡时,均衡价格为多少
    <2> 、市场均衡产量是多少
    <3> 、完全竞争市场对厂商产品的需求曲线有什么特点
    <4> 、完全竞争市场的厂商为实现利润最大化或亏损最小化目标,应遵循的原则是什么
    <5> 、完全竞争市场必须具备的条件有哪些


    答案:
    解析:
    <1> 、 市场均衡时,Qd=Qs,即:5000-50P=4000+200P,解得均衡价格P=4(4分)
    <2> 、 市场均衡产量Q=Qd=Qs=5000-50×4=4800(3分)
    <3> 、完全竞争市场对厂商产品的需求曲线是一条水平线,所对应的价格是整个行业的供求均衡价格,且厂商的平均收益曲线、边际收益曲线和需求曲线重合。(3分)
    <4> 、完全竞争市场的厂商可以遵循边际收益等于边际成本的原则实现利润最大化或亏损最小化目标。(3分)
    <5> 、完全竞争市场必须具备以下条件:①有大量的买者和卖者。②每个厂商提供的都是完全同质的商品。③各种资源能够自由流动。④信息畅通、完全。(3分)

  • 第19题:

    假定在完全竞争行业中有许多相同的厂商,代表性厂商LAC曲线的最低点的值为6元,产量为500单位;当厂商产量为550单位的产品时,各厂商的SAC为7元;已知市场需求函数与供给函数分别是:QD=80000-5000P,QS=35000+2500P。市场均衡价格,并判断该行业是在长期还是在短期处于均衡?为什么?


    正确答案:市场均衡时P=6与代表性企业厂商LAC曲线的最低点的值相等,故行业处于长期均衡状态。

  • 第20题:

    计算题: 己知某商品在某市场特定时期的需求函数是:QD、=16一3P,供给函数为:Qs=6+SP 试求:(l)该商品的均衡价格和均衡数量。 (2)均衡时的需求价格弹性。


    正确答案: (1)把需求函数和供给函数联立方程组:QD、=16一3PQs=6+8P
    当Qs=QD、时的价格和成交量,即是均衡量和均衡价格
    则求解方程组,得:Q=13.3,P=10/l1(5分)
    (2)令需求价格弹性为E,则在点(13.3,10/11)处得需求弹性为:
    E=-3x(10/11×l/13.3)=-0.2(5分)

  • 第21题:

    完全竞争市场的效率体现在()

    • A、均衡产量最大
    • B、均衡价格最低
    • C、消费者剩余与生产者剩余之和最大
    • D、以上全对

    正确答案:D

  • 第22题:

    问答题
    已知完全竞争市场的需求函数为D=6300-400P,短期市场供给函数为SS=3000+150P,单个企业在LAC曲线最低点的价格为6,产量为50,单个企业的成本规模不变。  求:(1)市场短期均衡价格与均衡产量。  (2)判断该市场是否同时处于长期均衡,求行业内的厂商数量。  (3)如果市场的需求函数变为D′=8000-400P,短期供给函数SS′=4700+150P,求市场短期均衡的价格和产量。  (4)判断该市场是否同时处于长期均衡,并求行业内厂商数量。

    正确答案: (1)由D=SS得:6300-400P=3000+150P,解得市场短期均衡价格与均衡产量分别为:P=6,Q=3900。
    (2)P=6=LACmin,所以该市场处于长期均衡,行业内的厂商数量n=Q/50=78。
    (3)由D′=SS′得:8000-400P=4700+150P,解得市场短期均衡价格与均衡产量分别为:P′=6,Q′=5600。
    (4)P′=6=LACmin,所以该市场处于长期均衡,行业内的厂商数量n=Q′/50=5600/50=112。
    解析: 暂无解析

  • 第23题:

    问答题
    某竞争行业所有厂商的规模都相等,都是在产量达到500单位时达到长期平均成本的最低点4元,当用最优的企业规模生产600单位产量时,每一个企业的短期平均成本为4.5元,市场需求函数为Q=70000-5000P,供给函数为Q=40000+2500P,求解下列问题:  (1)市场均衡价格是多少?该行业处于短期均衡还是长期均衡?  (2)当处于长期均衡时,该行业有多少厂商?  (3)如果市场需求变化为Q=100000-5000P,求行业与厂商新的短期均衡价格与产量,在新的均衡点,厂商盈利还是亏损?

    正确答案: (1)由均衡条件知:
    70000-5000P=40000+2500P
    解得:P=4,Q=50000。
    由于均衡价格与长期平均成本的最低点相等,故该行业处于长期均衡。
    (2)n=50000/500=100,所以当处于长期均衡时,该行业有100个厂商。
    (3)由均衡条件知:
    100000-5000P=40000+2500P
    得均衡价格P=8,Q=60000。
    每个厂商q=60000/100=600,此时厂商的短期平均成本为4.5元,所以厂商盈利(8>4.5)。
    解析: 暂无解析