设A,B为满足AB=0的任意两个非零矩阵,则必有A.A的列向量组线性相关,B的行向量组线性相关 B.A的列向量组线性相关,B的列向量组线性相关 C.A的行向量组线性相关,B的行向量组线性相关 D.A的行向量组线性相关,B的列向量组线性相关

题目
设A,B为满足AB=0的任意两个非零矩阵,则必有


A.A的列向量组线性相关,B的行向量组线性相关
B.A的列向量组线性相关,B的列向量组线性相关
C.A的行向量组线性相关,B的行向量组线性相关
D.A的行向量组线性相关,B的列向量组线性相关


相似考题
更多“设A,B为满足AB=0的任意两个非零矩阵,则必有 ”相关问题
  • 第1题:

    设A为m×n矩阵,则齐次线性方程组Ax=0有非零解的充分必要条件是(  )。

    A、矩阵A的任意两个列向量线性相关
    B、矩阵A的任意两个列向量线性无关
    C、矩阵A的任一列向量是其余列向量的线性组合
    D、矩阵A必有一个列向量是其余列向量的线性组合

    答案:D
    解析:

  • 第2题:

    设A=,B为三阶非零矩阵,且AB=O,则r(A)=_______.


    答案:1、2
    解析:
    因为AB=0,所以r(A)+r(B)≤3,又因为B≠0,所以r(B)≥1,从而有r(A)≤2,显然A有两行不成比例,故r(A)≥2,于是r(A)=2.

  • 第3题:

    若A为m×n矩阵,B为n×m矩阵,则( ).

    A.当m>n时ABX=0必有非零解
    B.当m>n时AB必可逆
    C.当n>m时ABX=0只有零解
    D.当n>m时必有r(AB)<m

    答案:A
    解析:
    r(AB)≤r(A)≤n<m,AB是m阶方阵,由于系数矩阵的秩小于未知数的个数,故ABX=0有非零解.

  • 第4题:

    单选题
    设A为m×n矩阵,则齐次线性方程组Ax=0有非零解的充分必要条件是(  )。[2017年真题]
    A

    矩阵A的任意两个列向量线性相关

    B

    矩阵A的任意两个列向量线性无关

    C

    矩阵A的任一列向量是其余列向量的线性组合

    D

    矩阵A必有一个列向量是其余列向量的线性组合


    正确答案: D
    解析:
    线性方程组Ax=0有非零解⇔|A|=0⇔r(A)<n,矩阵A的列向量线性相关,所以矩阵A必有一个列向量是其余列向量的线性组合。

  • 第5题:

    单选题
    设A是m×n矩阵,B是n×m矩阵,则(  )。
    A

    当m>n时,必有|AB|≠0

    B

    当m>n时,必有|AB|=0

    C

    当n>m时,必有|AB|≠0

    D

    当n>m时,必有|AB|=0


    正确答案: C
    解析:
    因r(AB)≤min[r(A),r(B)]≤min(m,n),且AB为m×m矩阵,则当m>n时,由r(AB)≤n,知AB为不可逆矩阵,故必有|AB|=0。

  • 第6题:

    单选题
    设A,B均为n阶非零矩阵,且AB=0,则RA,RB满足()。
    A

    必有一个等于0

    B

    都小于n

    C

    一个小于n,一个等于n

    D

    都等于n


    正确答案: C
    解析: 暂无解析

  • 第7题:

    单选题
    若A为m×n矩阵,B为n×m矩阵,则(  ).
    A

    当m>n时ABX=0必有非零解

    B

    当m>n时AB必可逆

    C

    当n>m时ABX=0只有零解

    D

    当n>m时必有r(AB)<m


    正确答案: C
    解析:
    r(AB)≤r(A)≤n<m,AB是m阶方阵,由于系数矩阵的秩小于未知数的个数,故ABX=0有非零解.

  • 第8题:

    设A、B均为n阶非零矩阵,且AB=0,则R(A),R(B)满足:
    A.必有一个等于0 B.都小于n
    C. 一个小于n,一个等于n D.都等于n


    答案:B
    解析:
    提示:利用矩阵的秩的相关知识,可知A、B均为n阶非零矩阵,且AB = 0,则有R(A)+ R(B)≤n,而已知为n阶非零矩阵,1≤R(A)≤n,1≤R(B)≤n,所以R(A)、R(B)都小于n。

  • 第9题:

    ,B为三阶非零矩阵,且AB=0,则t=________.


    答案:1、-3.
    解析:
    由AB=0,对B按列分块有AB=A(β1,β2,β3)=(Aβ1,Aβ2,Aβ3)=(0,0,0),即β1,β2,β3是齐次方程组Ax=0的解,又因B≠0,故Ax=0有非零解,那么若熟悉公式:AB=0,则r(A)+r(B)≤n.可知r(A)<3.亦可求出t=-3.
    【评注】对于AB=O要有B的每个列向量都是齐次方程组Ax=0的构思,还要有秩r(A)+r(B)≤n的知识.

  • 第10题:

    设A,B均为n阶非零矩阵,且AB=0,则RA,RB满足()。

    • A、必有一个等于0
    • B、都小于n
    • C、一个小于n,一个等于n
    • D、都等于n

    正确答案:B

  • 第11题:

    填空题
    设,B为三阶非零矩阵,且AB=0,则t=____。

    正确答案: -3
    解析:
    由B是三阶非零矩阵,且AB=0,知B的列向量是方程组AB=0的解且为非零解,故|A|=0,解得t=-3。

  • 第12题:

    填空题
    设A为n阶方阵,若对任意n×m(m≥n)矩阵B都有AB=0,则A=____.

    正确答案: 0
    解析:
    取基本单位向量组为ε1,ε2,…εn
    当m=n时,由对任意B都有AB=0,则对B=(ε1,ε2,…εn)=En也成立,即AE=0,故A=0.
    当m>n时,取B=(ε1,ε2,…εn,B1)=(En,B1),则由AB=A(En,B1)=0,知AEn=0,故A=0.

  • 第13题:

    单选题
    若A为m×n矩阵,B为n×m矩阵,则(  )。
    A

    当m>n时,ABX()0()必有非零解

    B

    当m>n时,AB必可逆

    C

    当n>m时,ABX()0()只有零解

    D

    当n>m时,必有r(AB)<m


    正确答案: A
    解析:
    r(AB)≤r(A)≤n<m,AB是m阶方阵,由于系数矩阵的秩小于未知数的个数,故ABX()0()有非零解。

  • 第14题:

    单选题
    设A,B都是n阶非零矩阵,且AB=0,则A和B的秩(  )。
    A

    必有一个等于零

    B

    都等于n

    C

    一个小于n,一个等于n

    D

    都小于n


    正确答案: B
    解析:
    因为A,B都是n阶非零矩阵,所以A、B的秩≤n。若A的秩=n,则A可逆。由AB=0可知B=0,与已知B是n阶非零矩阵矛盾,所以A的秩<n。同理可推出B的秩<n,故选D项。