设A、B均为n阶非零矩阵,且AB=0,则R(A),R(B)满足: A.必有一个等于0 B.都小于n C. 一个小于n,一个等于n D.都等于n

题目
设A、B均为n阶非零矩阵,且AB=0,则R(A),R(B)满足:

A.必有一个等于0
B.都小于n
C. 一个小于n,一个等于n
D.都等于n

相似考题
更多“设A、B均为n阶非零矩阵,且AB=0,则R(A),R(B)满足: ”相关问题
  • 第1题:

    设A为四阶非零矩阵,且r(A^*)=1,则().

    A.r(A)=1
    B.r(A)=2
    C.r(A)=3
    D.r(A)=4

    答案:C
    解析:
    因为r(A^*)=1,所以r(A)=4-1=3,选(C).

  • 第2题:

    设A,B是n阶矩阵,且B≠0,满足AB=0,则以下选项中错误的是:
    A.r(A)+r(B)≤n B. A =0 或 B =0 C. 0≤r(A)


    答案:D
    解析:
    提示:根据矩阵乘积秩的性质,AB=0,有r(A)+r(B)≤n成立,选项A正确。AB=0,取矩阵的行列式, A B =0, A =0或 B =0,选项B正确。又因为B≠0,B为非零矩阵, r(B)≥1,由上式r(A) + r(B)≤n,推出0≤r(A)

  • 第3题:

    设A是4×3阶矩阵且r(A)=2,B=,则r(AB)=_______.


    答案:1、2
    解析:
    因为|B|=10≠0,所以r(AB)=r(A)=2.

  • 第4题:

    设A是m×s阶矩阵,.B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.


    答案:
    解析:

  • 第5题:

    ,B为三阶非零矩阵,且AB=0,则t=________.


    答案:1、-3.
    解析:
    由AB=0,对B按列分块有AB=A(β1,β2,β3)=(Aβ1,Aβ2,Aβ3)=(0,0,0),即β1,β2,β3是齐次方程组Ax=0的解,又因B≠0,故Ax=0有非零解,那么若熟悉公式:AB=0,则r(A)+r(B)≤n.可知r(A)<3.亦可求出t=-3.
    【评注】对于AB=O要有B的每个列向量都是齐次方程组Ax=0的构思,还要有秩r(A)+r(B)≤n的知识.

  • 第6题:

    设A,B为n阶矩阵,且r(A)+r(B)

    答案:
    解析:

  • 第7题:

    设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r(A)=r

    答案:
    解析:

  • 第8题:

    都是n(n≥3)阶非零矩阵,且AB=O,则r(B)=( )

    A. 0
    B.1
    C. 2
    D. 3

    答案:B
    解析:

  • 第9题:

    设A是5×6矩阵,则( )正确。
    A.若A中所有5阶子式均为0,则秩R(A)=4
    B.若秩R(A)=4,则A中5阶子式均为0
    C.若秩R(A)=4,则A中4阶子式均不为0
    D.若A中存在不为0的4阶子式,则秩R(A)=4


    答案:B
    解析:
    提示:利用矩阵秩的定义。

  • 第10题:

    设A,B均为n阶非零矩阵,且AB=0,则RA,RB满足()。

    • A、必有一个等于0
    • B、都小于n
    • C、一个小于n,一个等于n
    • D、都等于n

    正确答案:B

  • 第11题:

    单选题
    设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则(  )。
    A

    r(A)=m,r(B)=m

    B

    r(A)=m,r(B)=n

    C

    r(A)=n,r(B)=m

    D

    r(A)=n,r(B)=n


    正确答案: C
    解析:
    设A为m×n矩阵,B为n×m矩阵,因此r(A)≤m,r(B)≤m。
    由AB=E有r(AB)=r(E)=m,由r(AB)≤min{r(A),r(B)},知r(A)≥m,r(B)≥m,因此r(A)=m,r(B)=m。

  • 第12题:

    单选题
    设A,B均为n阶非零矩阵,且AB=0,则RA,RB满足()。
    A

    必有一个等于0

    B

    都小于n

    C

    一个小于n,一个等于n

    D

    都等于n


    正确答案: C
    解析: 暂无解析

  • 第13题:

    设A,B是n阶矩阵,且B≠0,满足AB=0,则以下选项中错误的是:


    答案:D
    解析:
    解根据矩阵乘积秩的性质,AB=0,有r(A)+r(B)≤n成立,选项A正确。AB =0,

  • 第14题:

    设A、B均为n阶非零矩阵,且AB=0,则R(A),R(B)满足:
    A.必有一个等于0 B.都小于n
    C. 一个小于n,一个等于n D.都等于n


    答案:B
    解析:
    提示:利用矩阵的秩的相关知识,可知A、B均为n阶非零矩阵,且AB = 0,则有R(A)+ R(B)≤n,而已知为n阶非零矩阵,1≤R(A)≤n,1≤R(B)≤n,所以R(A)、R(B)都小于n。

  • 第15题:

    设A=,B为三阶非零矩阵,且AB=O,则r(A)=_______.


    答案:1、2
    解析:
    因为AB=0,所以r(A)+r(B)≤3,又因为B≠0,所以r(B)≥1,从而有r(A)≤2,显然A有两行不成比例,故r(A)≥2,于是r(A)=2.

  • 第16题:

    设A=图},B≠0为三阶矩阵,且BA=0,则r(B)=_______.{


    答案:1、1
    解析:
    BA=0r(A)+r(B)≤3,因为r(A)≥2,所以r(B)≤1,又因为B≠0,所以r(B)=1.

  • 第17题:

    设A为n阶矩阵,A的各行元素之和为0且r(A)=n-1,则方程组AX=0的通解为_______.


    答案:
    解析:

  • 第18题:

    设A,B分别为m×n及n×s阶矩阵,且AB=O.证明:r(A)+r(B)≤n,


    答案:
    解析:

  • 第19题:

    设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则



    A.A秩r(A)=m,秩r(B)=m
    B.秩r(A)=m,秩r(B)=n
    C.秩r(A)=n,秩r(B)=m
    D.秩r(A)=n,秩r(B)=n

    答案:A
    解析:
    本题考的是矩阵秩的概念和公式.因为AB=E是m阶单位矩阵,知r(AB)=m.又因r(AB)≤min(r(A),r(B)),故m≤r(A),m≤r(B). ①另一方面,A是m×n矩阵,B是n×m矩阵,又有r(A)≤m,r(B)≤m. ②比较①、②得r(A)=m,r(B)=m.所以选(A)

  • 第20题:

    设A,B是n阶矩阵,且B≠0,满足AB=0,则以下选项中错误的是:
    A.r(A)+r(B)≤n B.

    A =0 或
    B =0
    C. 0≤r(
    D)

    答案:D
    解析:
    提示 根据矩阵乘积秩的性质,AB=0,有r(A)+r(B)≤n成立,选项A正确。AB=0,取矩阵的行列式, A B =0, A =0或 B =0,选项B正确。又因为B≠0,B为非零矩阵, r(B)≥1,由上式r(A) + r(B)≤n,推出0≤r(A)

  • 第21题:

    设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则( ).《》( )

    A.r(A)=m,r(B)=m
    B.r(A)=m,r(B)=n
    C.r(A)=n,r(B)=m
    D.r(A)=n,r(B)=n

    答案:A
    解析:
    设A为m×n矩阵,B为n×s矩阵,因此r(A)≤m,r(B)≤m.由AB=E有r(AB)=r(E)=m,由r(AB)≤min{r(A),r(B)},知r(A)≥m,r(B)≥m,因此r(A)=m,r(B)=m.

  • 第22题:

    填空题
    设A、B都是4阶方阵且AB=0,则r(A)+r(B)____。

    正确答案: ≤4
    解析:
    由AB=0,知矩阵B的列向量是方程组AX()0()的解,令r(A)=r1,r(B)≤4-r1,故r(A)+r(B)≤4。

  • 第23题:

    填空题
    设,B为三阶非零矩阵,且AB=0,则t=____。

    正确答案: -3
    解析:
    由B是三阶非零矩阵,且AB=0,知B的列向量是方程组AB=0的解且为非零解,故|A|=0,解得t=-3。