参考答案和解析
答案:D
解析:
更多“将2个红球与1个白球随机地放入甲、乙、丙三个盒子中,则乙盒中至少有1个红球的概率为 ”相关问题
  • 第1题:

    甲袋有白球3只,红球7只,黑球l5只。乙袋有白球10只,红球6只,黑球9只。现从两袋中各取一个,试求两球颜色相同的概率约为( )。

    A.0.17

    B.0.33

    C.0.45

    D.0.8


    正确答案:B

  • 第2题:

    现有三个箱子,第一个箱子有4个红球,3个白球;第二个箱子有3个红球,3个白球;第三个箱子有3个红球,5个白球;先取一只箱子,再从中取一只球,(1)求取到白球的概率;(2)若取到红球,求红球是从第二个箱子中取出的概率.


    答案:
    解析:

  • 第3题:

    袋中有1个红球、2个黑球与3个白球,现有放回地从袋中取两次,每次取一个球.以X,Y,Z分别表示两次取球所取得的红球、黑球与白球的个数.
    (Ⅰ)求P{X=1|Z=0};
    (Ⅱ)求二维随机变量(X,Y)的概率分布.


    答案:
    解析:

  • 第4题:

    甲盒内有红球4只,黑球2只,白球2只;乙盒内有红球5只,黑球3只;丙盒内有黑球2只,白球2只,从这三只盒子的任意一只中任取出一只球,它是红球的概率是( )

    A.0.5625
    B.0.5
    C.0.45
    D.O.375
    E.0.225

    答案:D
    解析:

  • 第5题:

    袋中有l个红球、2个黑球与3个白球,现有放回地从袋中取两次,每次取一个球,以X,y,Z分别表示两次取球所取得的红球、黑球与白球的个数。
    (1)求
    (2)求二维随机变量(X,Y)的概率分布。


    答案:
    解析:

  • 第6题:

    从一个装有三个红球两个白球的盒子里摸球,那么连续两次摸中红球的概率为()

    A. 0.1
    B. 0.16
    C. 0.3
    D. 0.45

    答案:C
    解析:
    分步概率。“三个红球两个白球”,那么摸中红球的概率为0.6,第一次摸中红球以后,袋子里还有两个红球两个白球,此时摸中红球的概率为0.5,分步概率做乘法,那么连续两次摸中红球的概率0.3。选择C。

  • 第7题:

    一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是__________。


    答案:
    解析:

  • 第8题:

    一口袋有6个白球,4个红球,“无放回”地从袋中取出3个球,则事件“恰有两个红球”的概率为()


    正确答案:3/10

  • 第9题:

    1000个红球,1000个白球,放入两个盒子中,每个盒子放1000个球,有()种放法。


    正确答案:1001种

  • 第10题:

    单选题
    将10个小球随机放入甲、乙、丙三个盒子中,且每个盒子中小球的个数均为质数,接着在甲、乙、丙三个盒子中分别放入等于其盒内球数的2、3、4倍的小球。两次共放入了39个小球。最终甲盒中的小球比乙盒()
    A

    多2个

    B

    少11个

    C

    少2个

    D

    少20个


    正确答案: C
    解析: 不定方程问题。设甲、乙、丙三个盒子中第一次放入小球的个数分别为x、y、z个,由题意列方程得:x+y+z=10,2x+3y+4z=29;消去z后可得:2x+y=11,由于x、y均为质数,易得x=3,y=5,z=2。(x=2,y=7时,z=1,不满足质数的要求。)最后将甲、乙、丙盒子中小球个数代入计算即可。因此,本题答案为B选项。

  • 第11题:

    问答题
    8.袋中有7个球,其中红球5个白球2个,从袋中取球两次,每次随机地取一个球,取后不放回,求:    (1)第一次取到白球、第二次取到红球的概率;    (2)两次取得一红球一白球的概率.

    正确答案:
    解析: 暂无解析

  • 第12题:

    填空题
    甲袋中有5只白球,5只红球,15只黑球,乙袋中有10只白球,5只红球,10只黑球,从两袋中各取一球,则两球颜色相同的概率为____。

    正确答案: 9/25
    解析:
    分别记白、红、黑为第1、2、3种颜色,设Ai:“从甲袋中取出的是第i种颜色的球”;Bi:“从乙袋中取出的是第i种颜色的球”;C:“取出的球的颜色相同”。则C=A1B1∪A2B2∪A3B3
    故P(C)=P(A1B1∪A2B2∪A3B3)=P(A1B1)+P(A2B2)+P(A3B3)=P(A1)P(B1)+P(A2)P(B2)+P(A3)P(B3)=(5/25)×(10/25)+(5/25)×(5/25)+(15/25)×(10/25)=9/25。

  • 第13题:

    盒中有4个白球6个红球,无放回地每次抽取1个,则第二次取到白球的概率是


    A. 2/15
    B. 4/15
    C. 2/5
    D. 3/5

    答案:C
    解析:
    解题指导: 初步学习过概率的考生可能选择用条件概率去做。方法如下:第一次取到白球,第二次取到白球;(4/10)×3/9=12/90。第一次取到黑球,第二次取到白球。(6/10)×4/9=24/90。12/90+24/90=36/90=2/5。故答案为C。

  • 第14题:

    有三个盒子,第一个盒子有4个红球1个黑球,第二个盒子有3个红球2个黑球,第三个盒子有2个红球3个黑球,如果任取一个盒子,从中任取3个球,以X表示红球个数.
      (1)写出X的分布律;(2)求所取到的红球数不少于2个的概率.


    答案:
    解析:

  • 第15题:

    三个相同的盒子里各有2个球,其中一个盒子里放了2个红球,一个盒子里放了2个蓝球,一个盒子里放了红球和蓝球各1个。随机选择一个盒子后从中随机摸出一球是红球,则这个盒子里另一个球是红球的概率为( )。

    A.1/2
    B.3/4
    C.2/3
    D.4/5

    答案:C
    解析:

  • 第16题:

    将3个球随机地放入4个杯子中,则杯中球的最大个数为2的概率为:


    答案:C
    解析:
    提示 每次把一个球放入杯中,放入的方法总数n=4X4X4;“最大个数为2”的放入方法总数m=4X(1X3+3X2)。注意第2个球可放在已有1个球的杯中,还有3个空杯子,或放在3个空杯中(有2个杯子各有1个球)。

  • 第17题:

    一布袋中有红球8个,白球5个和黑球12个,它们除颜色外没有其他区别,随机地从袋中取出1球不是黑球的概率为( )


    答案:D
    解析:

  • 第18题:

    甲、乙、丙分别为红、黄、蓝色的三个小球,放在A、B、C三个箱子里。已知①甲球不是蓝色;②黄色球在A中;③B中的球不是红色的;④乙球不在B中,丙球不在A中。下列推断完全正确的是()。

    A.甲球是红色,在A中
    B.甲球是黄色,在C中
    C.乙球是黄色,在A中
    D.丙球是蓝色,在B中

    答案:D
    解析:
    黄球在A中,B中的球不是红色,则B中球为蓝色,C中球为红色。甲不是蓝色,所以在A或C中,乙球在A或C中。所以,甲在A中、乙在C中,或甲在C中、乙在A中,故丙球在B中。

  • 第19题:

    现有3个箱子,依次放入1、2、3个球,然后将3个箱子随机编号为甲、乙、丙,接着在甲、乙、丙3个箱子里分别放入其箱内球数的2、3、4倍,共放了22个球。最终甲箱中的球比乙箱()。

    • A、多1个
    • B、少1个
    • C、多2个
    • D、少2个

    正确答案:A

  • 第20题:

    将10个小球随机放入甲、乙、丙三个盒子中,且每个盒子中小球的个数均为质数,接着在甲、乙、丙三个盒子中分别放入等于其盒内球数的2、3、4倍的小球。两次共放入了39个小球。最终甲盒中的小球比乙盒()

    • A、多2个
    • B、少11个
    • C、少2个
    • D、少20个

    正确答案:B

  • 第21题:

    单选题
    一个盒子里有20个球,其中有18个红球,2个黑球,每个球除颜色外都相同,从中任意取出3个球,则下列结论中,正确的是(  )
    A

    所取出的3个球中,至少有一个是黑球 

    B

    所取出的3个球中,至少有2个黑球

    C

    所取出的3个球中,至少有1个是红球  

    D

    所取出的3个球中,至少有2个是红球


    正确答案: A
    解析: 暂无解析

  • 第22题:

    单选题
    从一个装有三个红球两个白球的盒子里摸球,那么连续两次摸中红球的概率为(  )。
    A

    0.1

    B

    0.16

    C

    0.3

    D

    0.45


    正确答案: C
    解析:

  • 第23题:

    单选题
    现有3个箱子,依次放入1、2、3个球,然后将3个箱子随机编号为甲、乙、丙,接着在甲、乙、丙3个箱子里分别放入其箱内球数的2、3、4倍,共放了22个球。最终甲箱中的球比乙箱()。
    A

    多1个

    B

    少1个

    C

    多2个

    D

    少2个


    正确答案: A
    解析: 由题知,甲、乙、丙3个箱子里最终的球数为原球数的3、4、5倍,而原来的球数是1或2或3,设三个箱子原来分别有x、y、z个球,则有x+y+x=6……(1),3x+4y+5x=22……(2),因为比较的是甲和乙的关系,因此我们将z消去,用5×(1)-(2)得2x+y=8.如果x=1,y=6,不符合,如果x=2,y=4,不符合,于是x=3,y=2,选A。