参考答案和解析
答案:
解析:
更多“ 设矩阵是4阶非零矩阵, 且满足证明矩阵B的秩”相关问题
  • 第1题:

    设A=,B为三阶非零矩阵,且AB=O,则r(A)=_______.


    答案:1、2
    解析:
    因为AB=0,所以r(A)+r(B)≤3,又因为B≠0,所以r(B)≥1,从而有r(A)≤2,显然A有两行不成比例,故r(A)≥2,于是r(A)=2.

  • 第2题:

    设n阶矩阵A满足(aE-A)(bE-A)=O且a≠6.证明:A可对角化.


    答案:
    解析:
    【证明】由(aE-A)(bE-A)=O,得|aE-A|·|bE-A|=0,则|aE-A|=0或者
    |bE-A|=0.又由(aE-A)(bE-A)=O,得r(aE-A)+r(bE-A)≤n.
    同时r(aE-A)+r(bE-A)≥r[(aE-A)-(bE-A)]=r[(a-b)E]=n,
    所以r(aE-A)+r(bE-A)=n.
    (1)若|aE-A|≠0,则r(aE-A=n,所以r(bE-A)=0,故A=bE.
    (2)若|bE-A|≠0,则r(bE-A)=n,所以r(aE-A)=0,故A=aE.
    (3)若|aE-A|=0且|bE-A|=0,则a,b都是矩阵A的特征值.
    方程组(aE-A)X=0的基础解系含有n-r(aE-A)个线性无关的解向量,即特征值a对应的线性无关的特征向量个数为n-r(aE-A)个;
    方程组(bE-A)X=0的基础解系含有n-r(bE-A)个线性无关的解向量,即特征值b对应的线性无关的特征向量个数为n-r(bE-A)个.
    因为n-r(aE-A)+n-r(bE-A)=n,所以矩阵A有n个线性无关的特征向量,所以A一定可以对角化.

  • 第3题:

    设n阶实对称矩阵A的秩为r,且满足,求 ①二次型的标准形; ②行列式的值,其中E为单位矩阵


    答案:
    解析:

  • 第4题:

    设A,B为同阶矩阵,且.证明当且仅当


    答案:
    解析:

  • 第5题:

    若矩阵A=,B是三阶非零矩阵,满足AB=O,则t=_______.


    答案:1、1
    解析:
    由AB=0得r(A)+r(B)≤3,因为r(B)≥1,所以r(A)≤2,又因为矩阵A有两行不成比例,所以r(A)≥2,于是r(A)=2.
      由得t=1.

  • 第6题:

    设A、B、C为同阶矩阵,且C为非奇异矩阵,满足,求证:


    答案:
    解析:

  • 第7题:

    设A,B为三阶矩阵,且满足方程.若矩阵,求矩阵B.


    答案:
    解析:

  • 第8题:

    设A=,且存在三阶非零矩阵B,使得AB=O,则a=_______,b=_______.


    答案:1、2 2、1
    解析:
    ,因为AB=O,所以r(A)+r(B)≤3,又B≠O,于是r(B)≥1,故r(A)≤2,从而a=2,b=1.

  • 第9题:

    设A为3阶实对称矩阵,A的秩为2,且. (Ⅰ)求A的特征值与特征向量; (Ⅱ)求矩阵A


    答案:
    解析:

  • 第10题:

    问答题
    设A是n阶矩阵,且满足Am=E,其中m为整数,E为n阶单位矩阵。令将A中的元素aij换成它的代数余子式Aij而成的矩阵为A(~),证明:(A(~))m=E。

    正确答案:
    因为Am=E,所以,Am,=,A,m=1,,A,=1≠0,即矩阵A可逆。
    由题知A(~)=(A*)T,其中A*为A的伴随矩阵。所以有(A(~))m=[(A*)T]m=[(,A,A-1)T]m=[(A-1)T]m=[(Am)-1]T=E。
    解析: 暂无解析

  • 第11题:

    填空题
    设,B为三阶非零矩阵,且AB=0,则t=____。

    正确答案: -3
    解析:
    由B是三阶非零矩阵,且AB=0,知B的列向量是方程组AB=0的解且为非零解,故|A|=0,解得t=-3。

  • 第12题:

    单选题
    下列结论中正确的是(    )
    A

    矩阵A的行秩与列秩可以不等

    B

    秩为r的矩阵中,所有r阶子式均不为零

    C

    若n阶方阵A的秩小于n,则该矩阵A的行列式必等于零

    D

    秩为r的矩阵中,不存在等于零的r-1阶子式


    正确答案: D
    解析:

  • 第13题:

    设A1,A2分别为m阶,n阶可逆矩阵,分块矩阵.证明:A可逆,且


    答案:
    解析:

  • 第14题:

    设A为m阶实对称矩阵且正定,B为m×n实矩阵,B^T为B的转置矩阵,试证:B^TAB为正定矩阵的充分必要条件是B的秩r(B)=n,


    答案:
    解析:

  • 第15题:

    设A为n阶非零矩阵,且存在自然数k,使得A^k=O.证明:A不可以对角化.


    答案:
    解析:

  • 第16题:

    设3阶矩阵A 满足 ,证明A可对角化


    答案:
    解析:

  • 第17题:

    设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵.其中A*是矩阵A的伴随矩阵,E是n阶单位矩阵. (1)计算并化简PQ; (2)证明:矩阵Q可逆的充分必要条件是.


    答案:
    解析:

  • 第18题:

    设n阶矩阵A 满足,其中s≠t,证明A可对角化


    答案:
    解析:

  • 第19题:

    设A为m×n阶实矩阵,且r(A)=n.证明:A^TA的特征值全大于零.


    答案:
    解析:

  • 第20题:

    设A为三阶实对称矩阵,A的秩为2,且

      (Ⅰ)求A的所有特征值与特征向量;
      (Ⅱ)求矩阵A.


    答案:
    解析:

  • 第21题:

    设A为4阶魔术矩阵,分别对A进行如下操作: 求矩阵A的逆; 求矩阵A的行列式; 求矩阵A的秩; 求矩阵A的迹;


    正确答案: >>A=magic(4)
    >>B=inv(A)
    >>C=det(A)
    >>D=rank(A)
    >>E=trace(A)

  • 第22题:

    问答题
    设A为4阶魔术矩阵,分别对A进行如下操作: 求矩阵A的逆; 求矩阵A的行列式; 求矩阵A的秩; 求矩阵A的迹;

    正确答案: >>A=magic(4)
    >>B=inv(A)
    >>C=det(A)
    >>D=rank(A)
    >>E=trace(A)
    解析: 暂无解析

  • 第23题:

    单选题
    设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则(  )。
    A

    r>r1

    B

    r<rl

    C

    r=rl

    D

    r与r1的关系依C而定


    正确答案: A
    解析:
    由r1=r(B)≤min[r(A),r(C)]=r(A)=r。
    且A=BC1,故r=r(BC1)≤min[r(B),r(C1)]=r(B)=r1,所以有r=r1