参考答案和解析
答案:
解析:
【解】(1)设A1={一次性抽取4个球,其中2个红球2个白球),则
(2)设A2={逐个抽取4个球,取后不放回,其中2个红球2个白球},则

(3)设A3={逐个抽取4个球,取后放回,其中2个红球2个白球},则
更多“一个盒子中5个红球,5个白球,现按照如下方式,求取到2个红球和2个白球的概率. ”相关问题
  • 第1题:

    为了庆祝新年,“必胜客”举行赠送比萨抽奖活动。活动规则如下:在一个抽奖盒子里,共装有2 个红球、3 个 白球和4 个蓝球。每抽到一个白球就赠送比萨一个。那么,抽到白球的概率大概是多少?

    A.9.9% B.13.5% C.33.3% D.45%


    正确答案:C

  • 第2题:

    现有三个箱子,第一个箱子有4个红球,3个白球;第二个箱子有3个红球,3个白球;第三个箱子有3个红球,5个白球;先取一只箱子,再从中取一只球,(1)求取到白球的概率;(2)若取到红球,求红球是从第二个箱子中取出的概率.


    答案:
    解析:

  • 第3题:

    袋中有12只球,其中红球4个,白球8个,从中一次抽取两个球,求下列事件发生的概率:
      (1)两个球中一个是红球一个是白球;
      (2)两个球颜色相同.


    答案:
    解析:
    【解】(1)令A={抽取的两个球中一个是红球一个是白球},则.
    (2)令B={抽取的两个球颜色相同},则

  • 第4题:

    袋中有1个红球、2个黑球与3个白球,现有放回地从袋中取两次,每次取一个球.以X,Y,Z分别表示两次取球所取得的红球、黑球与白球的个数.
    (Ⅰ)求P{X=1|Z=0};
    (Ⅱ)求二维随机变量(X,Y)的概率分布.


    答案:
    解析:

  • 第5题:

    甲盒内有红球4只,黑球2只,白球2只;乙盒内有红球5只,黑球3只;丙盒内有黑球2只,白球2只,从这三只盒子的任意一只中任取出一只球,它是红球的概率是( )

    A.0.5625
    B.0.5
    C.0.45
    D.O.375
    E.0.225

    答案:D
    解析:

  • 第6题:

    袋中有l个红球、2个黑球与3个白球,现有放回地从袋中取两次,每次取一个球,以X,y,Z分别表示两次取球所取得的红球、黑球与白球的个数。
    (1)求
    (2)求二维随机变量(X,Y)的概率分布。


    答案:
    解析:

  • 第7题:

    一个袋子里有8个黑球,8个白球,随机不放回地连续取球五次。每次取出1个球,求最多取到3个白球的概率。


    答案:
    解析:

  • 第8题:

    一个口袋中有7个红球3个白球,从袋中任取一球,看过颜色后是白球则放回袋中,直至取到红球,然后再取一球,假设每次取球时各个球被取到的可能性相同,求第一、第二次都取到红球的概率( )。

    A.7/10
    B.7/15
    C.7/20
    D.7/30

    答案:B
    解析:
    设AB分别表演一、二次取红球,则有P(AB)=P(A)P(B|A)=7/106/9=7/15。

  • 第9题:

    为了庆祝新年,“必胜客”举行赠送比萨抽奖活动。活动规则如下:在一个抽奖盒子里,共装有2个红球、3个白球和4个蓝球。每抽到一个白球就赠送比萨一个。那么,抽到白球的概率大概是多少( )

    • A、9.9%
    • B、13.5%
    • C、33.3%
    • D、45%

    正确答案:C

  • 第10题:

    单选题
    一只盒子中有红球m个,白球10个,黑球n个,每个球除颜色外其他都相同,从中任取一个球,取得白球的概率与不是白球的概率相同,那么m与n的关系是(  ).
    A

    m=4,n=6

    B

    m=5,n=5

    C

    m+n=5

    D

    m+n=10


    正确答案: B
    解析:
    因为从中任取一个球,取得白球的概率与不是白球的概率相同.所以白球的个数与不是白球的球的个数相等,所以m+n=10.

  • 第11题:

    问答题
    38.当袋中有2个白球3个红球.现从袋中随机地抽取2个球,以X表示取到的红球个数。求X的分布律.

    正确答案:
    解析:

  • 第12题:

    问答题
    8.袋中有7个球,其中红球5个白球2个,从袋中取球两次,每次随机地取一个球,取后不放回,求:    (1)第一次取到白球、第二次取到红球的概率;    (2)两次取得一红球一白球的概率.

    正确答案:
    解析: 暂无解析

  • 第13题:

    有十个小球,其中4个红球,6个白球,若取到一个红球记2分,取到1个白球记1分,现从这十个球取出4个球,使总分不低于5分的取法有多少种


    答案:
    解析:

  • 第14题:

    袋中有a个黑球和b个白球,一个一个地取球,求第k次取到黑球的概率(1≤k≤a+b).


    答案:
    解析:
    方法一基本事件数n=(a+b)!,设Ak={第k次取到黑球),则有利样本点数为a(a+b-1)!,所以

    方法二把所有的球看成不同对象,取k次的基本事件数为,第k次取到黑球所包含的事件数为,则

  • 第15题:

    有三个盒子,第一个盒子有4个红球1个黑球,第二个盒子有3个红球2个黑球,第三个盒子有2个红球3个黑球,如果任取一个盒子,从中任取3个球,以X表示红球个数.
      (1)写出X的分布律;(2)求所取到的红球数不少于2个的概率.


    答案:
    解析:

  • 第16题:

    三个相同的盒子里各有2个球,其中一个盒子里放了2个红球,一个盒子里放了2个蓝球,一个盒子里放了红球和蓝球各1个。随机选择一个盒子后从中随机摸出一球是红球,则这个盒子里另一个球是红球的概率为( )。

    A.1/2
    B.3/4
    C.2/3
    D.4/5

    答案:C
    解析:

  • 第17题:

    将2个红球与1个白球随机地放入甲、乙、丙三个盒子中,则乙盒中至少有1个红球的概率为


    答案:D
    解析:

  • 第18题:

    一个袋子里有8个黑球,8个白球,随机不放回连续取球5次,每次取出1个球,求最多取到3个白球的概率. .?


    答案:
    解析:

  • 第19题:

    从一个装有三个红球两个白球的盒子里摸球,那么连续两次摸中红球的概率为()

    A. 0.1
    B. 0.16
    C. 0.3
    D. 0.45

    答案:C
    解析:
    分步概率。“三个红球两个白球”,那么摸中红球的概率为0.6,第一次摸中红球以后,袋子里还有两个红球两个白球,此时摸中红球的概率为0.5,分步概率做乘法,那么连续两次摸中红球的概率0.3。选择C。

  • 第20题:

    一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是__________。


    答案:
    解析:

  • 第21题:

    1000个红球,1000个白球,放入两个盒子中,每个盒子放1000个球,有()种放法。


    正确答案:1001种

  • 第22题:

    单选题
    为了庆祝新年,“必胜客”举行赠送比萨抽奖活动。活动规则如下:在一个抽奖盒子里,共装有2个红球、3个白球和4个蓝球。每抽到一个白球就赠送比萨一个。那么,抽到白球的概率大概是多少?()
    A

    9.9%

    B

    13.5%

    C

    33.3%

    D

    45%


    正确答案: C
    解析: 球的总数为9,其中白球个数为3,则抽到白球的概率为3÷9≈33.3%。故正确答案为C。

  • 第23题:

    单选题
    从一个装有三个红球两个白球的盒子里摸球,那么连续两次摸中红球的概率为(  )。
    A

    0.1

    B

    0.16

    C

    0.3

    D

    0.45


    正确答案: C
    解析: