参考答案和解析
答案:
解析:
更多“设随机变量X~N(μ,σ^2),Y~U[-π,π],X,Y相互独立,令Z=X+Y,求fz(z).”相关问题
  • 第1题:

    设随机变量X,Y,Z相互独立,且X~U[-1,3],Y~B,Z~N(1,3……2),且随机变量U=X+2Y-32+2,则D(U)=_______.


    答案:
    解析:

  • 第2题:

    设二维随机变量(X,Y)服从二维正态分布,且X~N(1,3^2),Y~N(0,4^2),且X,Y的相
      关系数为-,又设Z=
    (1)求E(Z),D(Z);(2)求;(3)X,Z是否相互独立?为什么?


    答案:
    解析:
    【解】(1)

    (2)
    (3)因为(X,Y)服从二维正态分布,所以Z服从正态分布,同时X也服从正态分布,又X,
    Z不相关,所以X,Z相互独立.

  • 第3题:

    设D={(x,y)|0,
      (1)令U=X+Z,求U的分布函数.
      (2)判断X,Z是否独立.


    答案:
    解析:

  • 第4题:

    设随机变量X~U(0,1),Y~E(1),且X,Y相互独立,求Z=X+Y的密度函数


    答案:
    解析:

  • 第5题:

    设随机变量X和Y相互独立,且分布函数为Fx(x)=,Fy(y)=,令U=X+Y,则U的分布函数为_______.


    答案:
    解析:

  • 第6题:

    设随机变量X~N(1,2),Y~N(-1,2),Z~N(0,9)且随机变量X,Y,Z相互独立,已知a(X+Y)2+bZ2~χ2(n)(ab≠O),则a=_______,b=_______,Z=_______.


    答案:
    解析:
    由X~N(1,2),Y~N(-1,2),Z~N(0,9),得X+Y~N(0,4),且,故.

  • 第7题:

    设随机变量X,Y独立同分布,且P(X=i)=,i=1,2,3.
      设随机变量U=max{X,Y},V=min{X,Y}.
      (1)求二维随机变量(U,V)的联合分布;(2)求Z=UV的分布;
      (3)判断U,V是否相互独立?(4)求P(U=V).


    答案:
    解析:

  • 第8题:

    设随机变量X与Y相互独立,X的概率分布为P{X=1}=P{X=-1}=,Y服从参数为λ的泊松分布.令Z=XY.
      (Ⅰ)求Cov(X,Z);
      (Ⅱ)求Z的概率分布.


    答案:
    解析:

  • 第9题:

    设随机变量X,Y相互独立,且X的概率分布为P{X=0)=P{X=2)=,Y的概率密度为
      (Ⅰ)求P{Y≤EY};
      (Ⅱ)求Z=X+Y的概率密度.


    答案:
    解析:

  • 第10题:

    若随机变量X~N(1,4),Y~N(2,9),且X与Y相互独立。设Z=X-Y+3,则Z~()。


    正确答案:N(2,13)

  • 第11题:

    若随机变量X~N(0,4),Y~N(-1,5),且X与Y相互独立。设Z=X+Y-3,则Z~()。


    正确答案:N(-4,9)

  • 第12题:

    填空题
    已知随机变量X~N(-1,1),Y~N(3,1),且X、Y相互独立,Z=X-2Y,则Z~____。

    正确答案: N(-7,5)
    解析:
    因为X,Y相互独立且服从正态分布,则它们的线性组合也服从正态分布,又E(Z)=E(X)-2E(Y)=-1-2×3=-7,D(Z)=D(X)+4D(Y)=1+4=5,故Z~N(-7,5)。

  • 第13题:

    设二维随机变量(X,Y)的联合密度函数为f(x,y)=
      (1)求随机变量X,Y的边缘密度函数;
      (2)判断随机变量X,Y是否相互独立;
      (3)求随机变量Z=X+2Y的分布函数和密度函数.


    答案:
    解析:

  • 第14题:

    设随机变量X,Y相互独立,且X~N,Y~N,Z=|X-Y|,求
      E(Z),D(Z).


    答案:
    解析:

  • 第15题:

    设随机变量(X,Y)的联合密度函数为f(x,y)=(1)求P(X>2Y);(2)设Z=X+Y,求Z的概率密度函数.


    答案:
    解析:

  • 第16题:

    设随机变量X~U(0,1),Y~E(1),且X,Y相互独立,求随机变量Z=X+Y的概率密度.


    答案:
    解析:

  • 第17题:

    设随机变量X,Y相互独立且都服从标准正态分布,令U=X^2+Y^2.求:
      (1)(u);(2)P{U>D(U)|U>E(U)}.


    答案:
    解析:

  • 第18题:

    设随机变量(X,Y)在区域D={(z,y)|0≤x≤2,0≤y≤1}上服从均匀分布,令
      U=,V=.
      (1)求(U,V)的联合分布;(2)求.


    答案:
    解析:

  • 第19题:

    设随机变量X与Y相互独立,且X服从标准正态分布N(0,1),Y的概率分布为P{Y=0}=P{Y=1}=.记Fz(z)为随机变量Z=XY的分布函数,则函数Fz(z)的间断点个数为

    A.A0
    B.1
    C.2
    D.3

    答案:D
    解析:

  • 第20题:

    设二维随机变量(X,Y)在区域上服从均匀分布,令
      (Ⅰ)写出(X,Y)的概率密度;
      (Ⅱ)请问U与X是否相互独立?并说明理由;
      (Ⅲ)求Z=U+X的分布函数F(z).


    答案:
    解析:

  • 第21题:

    若随机变量X~N(-2,4),Y~N(3,9),且X与Y相互独立。设Z=2X-Y+5,则Z~()。


    正确答案:N(-2,25)

  • 第22题:

    设随机变量X与Y相互独立,且X~N(1,2),Y~N(0,1)。令Z=-Y+2X+3,则D(Z)=()。


    正确答案:9

  • 第23题:

    设随机变量X~N(-3,1),Y~N(2,1),且X,Y相互独立,记Z=X-2Y+7,则Z~()。


    正确答案:N(0,5)