参考答案和解析
答案:
解析:
更多“设A为三阶矩阵,且|A|=4,则=_______.”相关问题
  • 第1题:

    设A、B均为三阶方阵,且行列式|A|=1,|B|=-2,A^T为A的转置矩阵,则行列式|-2A^TB^-1|=(  )。

    A. -1
    B. 1
    C. -4
    D. 4

    答案:D
    解析:
    因为A、B均为三阶方阵,计算得
    |-2A^TB^-1|=(-2)^3×|A^T|×|B^-1|=(-2)^3×1×(1/-2)=4

  • 第2题:

    ,B是三阶非零矩阵,且,则().



    答案:B
    解析:

  • 第3题:

    设A,B均为4阶矩阵,且|A|=3,|B|=-2,则|-(A'B-1)2|的值为( )。



    答案:B
    解析:

  • 第4题:

    设A是4×3阶矩阵且r(A)=2,B=,则r(AB)=_______.


    答案:1、2
    解析:
    因为|B|=10≠0,所以r(AB)=r(A)=2.

  • 第5题:

    设A=图},B≠0为三阶矩阵,且BA=0,则r(B)=_______.{


    答案:1、1
    解析:
    BA=0r(A)+r(B)≤3,因为r(A)≥2,所以r(B)≤1,又因为B≠0,所以r(B)=1.

  • 第6题:

    设A是4×3矩阵,且r(A)=2,而,则r(AB)=_________.


    答案:1、2.
    解析:
    基础题,本题是考查矩阵乘积的秩的公式:如果A可逆,则r(AB)=r(B);r(BA)=r(B).本题|B|=10≠0,故B为可逆矩阵,因此r(AB)=r(A)=2

  • 第7题:

    设A是三阶矩阵,有特征值是A的伴随矩阵,E是三阶单位阵,则


    答案:
    解析:

  • 第8题:

    设B≠O为三阶矩阵,且矩阵B的每个列向量为方程组的解,则k=_______,|B|=_______.


    答案:1、0
    解析:
    ,因为B的列向量为方程组的解且B≠0,所以AB=0且方程组有非零解,故|A|=0,解得k=1.因为AB=O,所以r(A)+r(B)≤3且r(A)≥1,于是r(B)≤2小于3,故|B|=0.

  • 第9题:

    设A为三阶实对称矩阵,A的秩为2,且

      (Ⅰ)求A的所有特征值与特征向量;
      (Ⅱ)求矩阵A.


    答案:
    解析:

  • 第10题:

    单选题
    设A为4×4矩阵,B为5×5矩阵,且|A|=2,|B|=-2,则|-|A|B|=(  )。
    A

    16

    B

    32

    C

    64

    D

    128


    正确答案: A
    解析:
    根据行列式A和B的值有|-|A|B|=|-2B|=(-2)5·|B|=(-2)6=64。

  • 第11题:

    填空题
    设A为4×4矩阵,B为5×5矩阵,且|A|=2,|B|=-2,则|-|A|B|=____,|-|B|A|=____。

    正确答案: 64,32
    解析:
    根据行列式A和B的值有|-|A|B|=|-2B|=(-2)5·|B|=(-2)6=64。|-|B|A|=|2A|=24·|A|=25=32。

  • 第12题:

    单选题
    设A、B均为三阶方阵,且行列式|A|=1,|B|=-2,AT为A的转置矩阵,则行列式|-2ATB-1|=(  )。[2018年真题]
    A

    -1

    B

    1

    C

    -4

    D

    4


    正确答案: B
    解析:
    因为A、B均为三阶方阵,计算得|-2ATB1|=(-2)3×|AT|×|B1|=(-2)3×1×(-1/2)=4。

  • 第13题:

    设三阶矩阵,若A的伴随矩阵的秩等于1,则必有

    A.a=b或a+2b=0
    B.a=b或a+2b≠0
    C.a≠b且a+2b=0
    D.a≠b且a+2b≠0

    答案:C
    解析:

  • 第14题:

    已知,P为三阶非零矩阵,且,则



    答案:C
    解析:

  • 第15题:

    设A是三阶矩阵,且|A|=4,则=_______.


    答案:1、2
    解析:

  • 第16题:

    设A=,B为三阶非零矩阵,且AB=O,则r(A)=_______.


    答案:1、2
    解析:
    因为AB=0,所以r(A)+r(B)≤3,又因为B≠0,所以r(B)≥1,从而有r(A)≤2,显然A有两行不成比例,故r(A)≥2,于是r(A)=2.

  • 第17题:

    设A为三阶方阵,A*为矩阵A的伴随矩阵,,请计算


    答案:
    解析:

  • 第18题:

    设A,B为三阶矩阵,且满足方程.若矩阵,求矩阵B.


    答案:
    解析:

  • 第19题:

    设A=,且存在三阶非零矩阵B,使得AB=O,则a=_______,b=_______.


    答案:1、2 2、1
    解析:
    ,因为AB=O,所以r(A)+r(B)≤3,又B≠O,于是r(B)≥1,故r(A)≤2,从而a=2,b=1.

  • 第20题:

    设α为三维单位列向量,E为三阶单位矩阵,则矩阵E-αα^T的秩为________.


    答案:
    解析:

  • 第21题:

    设A,B为三阶矩阵且A不可逆,又AB+2B=O 且r(B)=2,则 |A+4E|=

    A.8
    B.16
    C.2
    D.0

    答案:B
    解析:

  • 第22题:

    填空题
    设,B为三阶非零矩阵,且AB=0,则t=____。

    正确答案: -3
    解析:
    由B是三阶非零矩阵,且AB=0,知B的列向量是方程组AB=0的解且为非零解,故|A|=0,解得t=-3。

  • 第23题:

    填空题
    设A为4阶方阵,且r(A)=3,A*为A的伴随矩阵,则r(A*)=____。

    正确答案: 1
    解析:
    由A是4阶方阵且r(A)=3,知|A|=0,又AA*=|A|E=0为A的齐次方程组,则A*的列向量是齐次方程组Ax()0()的解,故r(A)+r(A*)≤4,则r(A*)≤1。由r(A)=3知,A至少有一个代数余子式不为0,故A*≠0,所以r(A*)=1。