设A,B,C均为n阶矩阵,E为n阶单位矩阵,若B=E+AB,C=A+CA,则B-C=A.E B.-E C.A D.-A

题目
设A,B,C均为n阶矩阵,E为n阶单位矩阵,若B=E+AB,C=A+CA,则B-C=



A.E
B.-E
C.A
D.-A

相似考题
参考答案和解析
答案:A
解析:
更多“设A,B,C均为n阶矩阵,E为n阶单位矩阵,若B=E+AB,C=A+CA,则B-C= ”相关问题
  • 第1题:

    设a为N阶可逆矩阵,则( ).

    A.若AB=CB,则a=C:
    B.
    C.A总可以经过初等变换化为单位矩阵E:
    D.以上都不对.


    答案:C
    解析:

  • 第2题:

    设A为m×n阶矩阵,B为n×m阶矩阵,且m>n,令r(AB)=r,则().

    A.r>m
    B.r=m
    C.rD.r≥m

    答案:C
    解析:
    显然AB为m阶矩阵,r(A)≤n,r(B)≤n,而r(AB)≤min{r(A),r(B)}≤n小于m,所以选(C).

  • 第3题:

    设a为N阶可逆矩阵,则( ).

    A.若AB=CB,则a=C
    B.
    C.A总可以经过初等变换化为单位矩阵E
    D.以上都不对


    答案:C
    解析:

  • 第4题:

    设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则



    A.A秩r(A)=m,秩r(B)=m
    B.秩r(A)=m,秩r(B)=n
    C.秩r(A)=n,秩r(B)=m
    D.秩r(A)=n,秩r(B)=n

    答案:A
    解析:
    本题考的是矩阵秩的概念和公式.因为AB=E是m阶单位矩阵,知r(AB)=m.又因r(AB)≤min(r(A),r(B)),故m≤r(A),m≤r(B). ①另一方面,A是m×n矩阵,B是n×m矩阵,又有r(A)≤m,r(B)≤m. ②比较①、②得r(A)=m,r(B)=m.所以选(A)

  • 第5题:

    设A和B均为n阶矩阵,则必有( )。《》( )



    答案:C
    解析:

  • 第6题:

    设A为n阶非零矩阵,E为n阶单位矩阵。若A3=0,则( )。

    A.E-A不可逆,E+A不可逆
    B.E—A不可逆。E+A可逆
    C.E—A可逆。E+A可逆
    D.E—A可逆。E十A不可逆

    答案:C
    解析:
    (层_A)(E“+A2)=E-A3趣,(E+A)(E_A+A:)趣+A3翘,故E-A,层+A均可逆。

  • 第7题:

    设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则( ).《》( )

    A.r(A)=m,r(B)=m
    B.r(A)=m,r(B)=n
    C.r(A)=n,r(B)=m
    D.r(A)=n,r(B)=n

    答案:A
    解析:
    设A为m×n矩阵,B为n×s矩阵,因此r(A)≤m,r(B)≤m.由AB=E有r(AB)=r(E)=m,由r(AB)≤min{r(A),r(B)},知r(A)≥m,r(B)≥m,因此r(A)=m,r(B)=m.

  • 第8题:

    填空题
    设n维向量α(→)=(a,0,…,0,a)T,a<0,E为n阶单位矩阵,矩阵A=E-α(→)α(→)T,B=E+α(→)α(→)T/a,且B为A的逆矩阵,则a=____。

    正确答案: -1
    解析:
    由矩阵B是矩阵A的逆矩阵,所以有AB=E。从而(E-α()α()T)(E+α()α()T/a)=E-α()α()Tα()α()T/a-α()α()Tα()α()T/a=E,即α()α()T(1/a-1-2a2/a)=0。
    由于α()α()T≠0,故1/a-1-2a2/a=0,又因a<0,可得a=-1。

  • 第9题:

    单选题
    设n维行向量α=(1/2,0,…,0,1/2),矩阵A=E-αTα,B=E+2αTα,其中E为n阶单位矩阵,则AB等于(  )。
    A

    O

    B

    -E

    C

    E

    D

    E+αTα


    正确答案: D
    解析:
    注意利用ααT=1/2来简化计算。AB=(E-αTα)(E+2αTα)=E+2αTα-αTα-2αTααTα=E+αTα-2αT(ααT)α=E+αTα-2·(1/2)αTα=E。

  • 第10题:

    单选题
    设A为n阶方阵,E为n阶单位矩阵,且A2=A,则(A-2E)-1=(  )。
    A

    (A+E)/2

    B

    -(A+E)/2

    C

    (A-E)/2

    D

    -(A-E)/2


    正确答案: C
    解析:
    由题设A2=A有,A2-A-2E=(A-2E)(A+E)=-2E,即(A-2E)[-(A+E)/2]=E,所以有(A-2E)1=-(A+E)/2。

  • 第11题:

    填空题
    设A为n阶方阵,若对任意n×m(m≥n)矩阵B都有AB=0,则A=____.

    正确答案: 0
    解析:
    取基本单位向量组为ε1,ε2,…εn
    当m=n时,由对任意B都有AB=0,则对B=(ε1,ε2,…εn)=En也成立,即AE=0,故A=0.
    当m>n时,取B=(ε1,ε2,…εn,B1)=(En,B1),则由AB=A(En,B1)=0,知AEn=0,故A=0.

  • 第12题:

    单选题
    设A为n阶方阵,E为n阶单位矩阵,且A2=A,则(A-2E)-1=(  )。
    A

    A+2E

    B

    A+E

    C

    (A+E)/2

    D

    -(A+E)/2


    正确答案: A
    解析:
    由题设A2=A有,A2-A-2E=(A-2E)(A+E)=-2E,即(A-2E)[-(A+E)/2]=E,所以有(A-2E)1=-(A+E)/2。

  • 第13题:

    与n阶单位矩阵E相似的矩阵是

    A.
    B.对角矩阵D(主对角元素不为1)
    C.单位矩阵E
    D.任意n阶矩阵A


    答案:C
    解析:

  • 第14题:

    设A是m×n矩阵,B是n×m矩阵,且AB=E,其中E为m阶单位矩阵,则( )


    A.r(A)=r(B)=m
    B.r(A)=m r(B)=n
    C.r(A)=n r(B)=m
    D.r(A)=r(B)=n

    答案:A
    解析:

  • 第15题:

    设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵.其中A*是矩阵A的伴随矩阵,E是n阶单位矩阵. (1)计算并化简PQ; (2)证明:矩阵Q可逆的充分必要条件是.


    答案:
    解析:

  • 第16题:

    设A为n阶非零矩阵,E为n阶单位矩阵,若A^3=O,则



    A.AE-A不可逆,E+A不可逆
    B.E-A不可逆,E+A可逆
    C.E-A可逆,E+A可逆
    D.E-A可逆,E+A不可逆

    答案:C
    解析:
    判断矩阵A可逆通常用定义,或者用充要条件行列式|A|≠0(当然|A|≠0又有很多等价的说法).因为(E-A)(E+A+A^2)=E-A^3=E,(E+A)(E-A+A^2)=E+A^3=E,所以,由定义知E-A,E+A均可逆.故选(C).

    【评注】本题用特征值也是简捷的,由A^3=OA的特征值λ=0E-A(或E+A)特征值均不为0|E-A|≠0(或|E+A|≠0)E-A(或E+A)可逆

  • 第17题:

    设a为N阶可逆矩阵,则( ).《》( )


    答案:C
    解析:

  • 第18题:

    设A和B均为n阶矩阵(n>1),m是大于1的整数,则必有(  )。


    答案:C
    解析:
    本题考查矩阵运算的相关性质。

  • 第19题:

    设A为n阶可逆矩阵,则(-A)的伴随矩阵(-A)*等于()。

    • A、-A*
    • B、A*
    • C、(-1)nA*
    • D、(-1)n-1A*

    正确答案:D

  • 第20题:

    单选题
    设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则(  )。
    A

    r(A)=m,r(B)=m

    B

    r(A)=m,r(B)=n

    C

    r(A)=n,r(B)=m

    D

    r(A)=n,r(B)=n


    正确答案: C
    解析:
    设A为m×n矩阵,B为n×m矩阵,因此r(A)≤m,r(B)≤m。
    由AB=E有r(AB)=r(E)=m,由r(AB)≤min{r(A),r(B)},知r(A)≥m,r(B)≥m,因此r(A)=m,r(B)=m。

  • 第21题:

    问答题
    设A是n阶矩阵,且满足Am=E,其中m为整数,E为n阶单位矩阵。令将A中的元素aij换成它的代数余子式Aij而成的矩阵为A(~),证明:(A(~))m=E。

    正确答案:
    因为Am=E,所以,Am,=,A,m=1,,A,=1≠0,即矩阵A可逆。
    由题知A(~)=(A*)T,其中A*为A的伴随矩阵。所以有(A(~))m=[(A*)T]m=[(,A,A-1)T]m=[(A-1)T]m=[(Am)-1]T=E。
    解析: 暂无解析

  • 第22题:

    填空题
    设A为n阶方阵,E为n阶单位矩阵,且A2=A,则(A-2E)-1=____。

    正确答案: -(A+E)/2
    解析:
    由题设A2=A有,A2-A-2E=(A-2E)(A+E)=-2E,即(A-2E)[-(A+E)/2]=E,所以有(A-2E)1=-(A+E)/2。

  • 第23题:

    单选题
    设n维向量α(→)=(a,0,…,0,a)T,a<0,E为n阶单位矩阵,矩阵A=E-α(→)α(→)T,B=E+α(→)α(→)T/a,且B为A的逆矩阵,则a=(  )。
    A

    4

    B

    2

    C

    -1

    D

    1


    正确答案: B
    解析:
    由矩阵B是矩阵A的逆矩阵,所以有AB=E。从而(E-α()α()T)(E+α()α()T/a)=E-α()α()Tα()α()T/a-α()α()Tα()α()T/a=E,即α()α()T(1/a-1-2a2/a)=0。
    由于α()α()T≠0,故1/a-1-2a2/a=0,又因a<0,可得a=-1。