设n阶矩阵A的伴随矩阵A^*≠0,若ζ1,ζ2,ζ3,ζ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系A.不存在. B.仅含一个非零解向量. C.含有两个线性无关的解向量. D.含有三个线性无关的解向量.

题目
设n阶矩阵A的伴随矩阵A^*≠0,若ζ1,ζ2,ζ3,ζ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系

A.不存在.
B.仅含一个非零解向量.
C.含有两个线性无关的解向量.
D.含有三个线性无关的解向量.

相似考题
更多“设n阶矩阵A的伴随矩阵A^*≠0,若ζ1,ζ2,ζ3,ζ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系”相关问题
  • 第1题:

    设α1,α2是非齐次线性方程组Ax=b的解.则A(5α2-4α1)=_________.


    正确答案:
    b

  • 第2题:

    设A是4×5矩阵,ξ1,ξ2是齐次线性方程组Ax=0的基础解系,则下列结论正确的是( ).

    A.ξ1-ξ2,ξ1+2ξ2也是Ax=0的基础解系
    B.k1ξ1+k1ξ2是Ax=0的通解
    C.k1ξ1+ξ2是Ax=0的通解
    D.ξ1-ξ2,ξ2-ξ1也是Ax=0的基础解系

    答案:A
    解析:
    由题设知道,n=5,s=n-r=2,r=3.B不正确,因为k1ξ1+k1ξ2=k1(ξ2+ξ1)只含有一个不定常数,同样理由说明C也不正确.D不正确,因为(ξ1-ξ2)+(ξ1+ξ2)=0,这表明ξ1-ξ2与ξ2-ξ1线性相关.A正确,因为ξ1-ξ2与ξ1+2ξ2都是Ax=0的解,且它 们线性无关,故选A.

  • 第3题:

    设有齐次线性方程组Ax=0和Bx=0, 其中A,B均为矩阵,现有4个命题:① 若Ax=0的解均是Bx=0的解,则秩(A)秩(B);② 若秩(A)秩(B),则Ax=0的解均是Bx=0的解;③ 若Ax=0与Bx=0同解,则秩(A)=秩(B);④ 若秩(A)=秩(B), 则Ax=0与Bx=0同解,以上命题中正确的是

    A.① ②
    B.① ③
    C.② ④
    D.③ ④

    答案:B
    解析:

  • 第4题:

    设有齐次线性方程组Ax=0和Bx=0, 其中A,B均为 矩阵,现有4个命题: ① 若Ax=0的解均是Bx=0的解,则秩(A) 秩(B); ② 若秩(A) 秩(B),则Ax=0的解均是Bx=0的解; ③ 若Ax=0与Bx=0同解,则秩(A)=秩(B); ④ 若秩(A)=秩(B), 则Ax=0与Bx=0同解


    A.① ②
    B.① ③
    C.② ④
    D.③ ④


    答案:B
    解析:

  • 第5题:

    设有齐次线性方程组Ax=0和Bx=0,其中A,B均m×n矩阵,现有4个命题:
      ①若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B);
      ②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;
      ③若Ax=0与Bx=0同解,则秩(A)=秩(B);

      ④若秩(A)=秩(B)则Ax=0与Bx=0同解;

      以上命题中正确的是

    A.①②.
    B.①③.
    C.②④.
    D.③④,

    答案:B
    解析:
    显然命题④错误,因此排除(C)、(D).对于(A)与(B)其中必有一个正确,因此命题①必正确,那么②与③哪一个命题正确呢?由命题①,“若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B)”正确,知“若Bx=0的解均是Ax=0的解,则秩(B)≥秩(A)”正确,可见“若Ax=0与Bx=0同解,则秩(A)=秩(B)”正确.即命题③正确,故应选(B).

  • 第6题:

    设3阶实对称矩阵A的各行元素之和都为3,向量都是齐次线性方程组AX=0的解.① 求A的特征值和特征向量.② 求作正交矩阵Q和对角矩阵


    答案:
    解析:

  • 第7题:

    设A为矩阵,都是齐次线性方程组Ax=0的解,则矩阵A为( )。



    答案:D
    解析:
    提示:由于线性无关,故R(A)= 1,显然选项A中矩阵秩为3,选项B和C中矩阵秩都为2。

  • 第8题:

    设A是4×6矩阵,则齐次线性方程组AX=0解的情况是()。

    • A、无解
    • B、只有零解
    • C、有非零解
    • D、不一定

    正确答案:C

  • 第9题:

    填空题
    设A为n阶方阵,则n元齐次线性方程组AX(→)=0(→)仅有零解的充要条件是|A|____。

    正确答案: ≠0
    解析:
    依据齐次线性方程组性质可知,系数行列式|A|≠0时,方程组仅有零解。

  • 第10题:

    单选题
    n阶矩阵A的伴随矩阵为A*,齐次线性方程组AX=O有两个线性无关的解,则(  ).
    A

    A*X=0的解均是AX=0的解

    B

    AX=0的解均是A*X=O的解

    C

    AX=0与A*X=0无非零公共解

    D

    AX=0与A*X=O仅有2个非零公共解


    正确答案: B
    解析:
    由齐次方程组AX=0有两个线性无关的解向量,知方程组AX=0的基础解系所含解向量的个数为n-r(A)≥2,即r(A)≤n-2<n-1.由矩阵A与其伴随矩阵秩的关系,知r(A*)=0,即A*=0.所以任意n维列向量均是方程组A*X=0的解,故方程组AX=0的解均是A*X=0的解.

  • 第11题:

    单选题
    设有齐次线性方程组Ax=0及Bx=0,其中A、B均为m×n矩阵,现有以下4个命题 ①若Ax=0的解均是Bx=0的解,则rA≥rB; ②若rA≥rB,则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则rA=rB; ④若rA=rB,则Ax=0与Bx=0同解。 以上命题中正确的是()。
    A

    ①②

    B

    ①③

    C

    ②④

    D

    ③④


    正确答案: B
    解析: 因为①中条件保证了n-r(A)≤n-r(B),所以r(A)≥r(B),而进一步易知③正确,而②、④均不能成立。

  • 第12题:

    设A为矩阵,都是线性方程组Ax=0的解,则矩阵A为:


    答案:D
    解析:
    提示:a1,a2是方程组Ax=0的两个线性无关的解,方程组含有3个未知量,帮矩阵A的秩R(A)=3-2=1,而选项A、B、C的秩分别为3、2、2,均不符合要求。将选项D代入

  • 第13题:

    若A是m×n矩阵,且m≠n,则当R(A)=n时,齐次线性方程组AX=0只有零解


    答案:对
    解析:

  • 第14题:

    若A是m×n矩阵,且m≠n,则当R(A)=n时,非齐次线性方程组AX=b,有唯一解


    答案:错
    解析:

  • 第15题:

    设A是m×n阶矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是( )。

    A.若Ax=0仅有零解,则Ax=b有惟一解
    B.若Ax=0有非零解,则Ax=b有无穷多个解
    C.若Ax=b有无穷多个解,则Ax=0仅有零解
    D.若Ax=b有无穷多个解,则Ax=0有非零解

    答案:D
    解析:

  • 第16题:

    设n元齐次线性方程组Ax=0的系数矩阵A的秩为r,则Ax=0有非零解的充要条件为( )。

    A.r=n
    B.r<n
    C.r≥n
    D.r>n

    答案:B
    解析:
    Ax=0有非零解的充要条件为|A|=0,即矩阵A不是满秩的,r<n。

  • 第17题:

    设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r(A)=r

    答案:
    解析:

  • 第18题:

    设有齐次线性方程组Ax=0及Bx=0,其中A、B均为m×n矩阵,现有以下4个命题 ①若Ax=0的解均是Bx=0的解,则rA≥rB; ②若rA≥rB,则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则rA=rB; ④若rA=rB,则Ax=0与Bx=0同解。 以上命题中正确的是()。

    • A、①②
    • B、①③
    • C、②④
    • D、③④

    正确答案:B

  • 第19题:

    单选题
    设A是4×6矩阵,则齐次线性方程组AX=0解的情况是()。
    A

    无解

    B

    只有零解

    C

    有非零解

    D

    不一定


    正确答案: A
    解析: AX=0有非零解的充要条件是R(A)<6,而4×6矩阵的秩R(A)≤4,故AX=0有非零解,故选(C)。

  • 第20题:

    单选题
    设A为n阶方阵,则n元齐次线性方程组AX(→)=0(→)仅有零解的充要条件是|A|(  )。
    A

    =0

    B

    ≠0

    C

    =1

    D

    ≠1


    正确答案: B
    解析:
    依据齐次线性方程组性质可知,系数行列式|A|≠0时,方程组仅有零解。

  • 第21题:

    单选题
    设A为n阶方阵,则n元齐次线性方程组AX(→)=0(→)仅有零解的充要条件是|A|(  )。
    A

    <0

    B

    ≠0

    C

    >0

    D

    =0


    正确答案: A
    解析:
    依据齐次线性方程组性质可知,系数行列式|A|≠0时,方程组仅有零解。

  • 第22题:

    单选题
    n阶矩阵A的伴随矩阵为A*,齐次线性方程组AX(→)=0(→)有两个线性无关的解,则(  )。
    A

    A*X()0()的解均是AX()0()的解

    B

    AX()0()的解均是A*X()0()的解

    C

    AX()0()与A*X()0()无非零公共解

    D

    AX()0()与A*X()0()仅有2个非零公共解


    正确答案: A
    解析:
    由齐次方程组AX()0()有两个线性无关的解向量,知方程组AX()0()的基础解系所含解向量的个数为n-r(A)≥2,即r(A)≤n-2<n-1。由矩阵A与其伴随矩阵秩的关系,知r(A*)=0,即A*=0。所以任意n维列向量均是方程组A*X()0()的解,故方程组AX()0()的解均是A*X()0()的解。