更多“设随机变量X仅取0,1,2三个值,相应的概率依次为C, ”相关问题
  • 第1题:

    设随机变量X~N(μ,σ^2),且方程x^2+4r+X=0无实根的概率为,则μ=_______.


    答案:1、4
    解析:
    因为方程x^2+4x+X=0无实根,所以16-4X小于0,即X>4.由X~N(μ,σ)且P(X>4)=1/2 得μ=4

  • 第2题:

    设随机变量X的概率密度为fx(x)=求y=e^x的概率密度FY(y).


    答案:
    解析:

  • 第3题:

    设二维随机变量(X,Y)的概率密度为则P{X+Y≤1}=_______.


    答案:
    解析:

  • 第4题:

    设随机变量X~U(0,1),Y~E(1),且X,Y相互独立,求随机变量Z=X+Y的概率密度.


    答案:
    解析:

  • 第5题:

    设随机变量X在区间(0,1)内服从均匀分布,在X=x(0  (Ⅰ)随机变量X和Y的联合概率密度;
      (Ⅱ)Y的概率密度;
      (Ⅲ)概率P{X+Y>1}.


    答案:
    解析:
    【简解】本题是数四2004年考题,考查均匀分布,二维随机变量的概率密度、边缘密度和条件密度,当年的得分率仅为0.204.主要的困难在于对条件概率密度的理解.

  • 第6题:

    设随机变量X与Y的概率分布分别为

      且P{X^2=Y^2}=1.
      (Ⅰ)求二维随机变量(X,Y)的概率分布;
      (Ⅱ)求Z=XY的概率分布;
      (Ⅲ)求X与Y的相关系数ρXY.


    答案:
    解析:

  • 第7题:

    设随机变量X的概率密度为
      
      对X进行独立重复的观测,直到第2个大于3的观测值出现时停止,记Y为观测次数.
      (Ⅰ)求Y的概率分布;
      (Ⅱ)求EY.


    答案:
    解析:
    【分析】令A={对X进行一次观测得到的值大于3}.

    【评注】本题类似于我们在2000年出的几何分布考题.从建模到用幂级数在其收敛区间内可逐项求导求和会有不少考生感到困难,本题要比2000年的难一些.

  • 第8题:

    设随机变量X的分布函数为求随机变量X的概率密度和概率


    答案:
    解析:
    解:本题考查概率密度概念的简单应用。

  • 第9题:

    标准正态随机变量X取一点a的概率P(X=a)为( )。



    答案:B
    解析:

  • 第10题:

    x是连续型随机变量,关于x的函数的高度是()

    • A、给定x的值的概率
    • B、0.50,因为它是中间值
    • C、小于0的值
    • D、概率密度函数f(x)

    正确答案:D

  • 第11题:

    问答题
    15.设随机变量X的概率密度为

    正确答案:
    解析:

  • 第12题:

    问答题
    1.设随机变量X只可能取一1,0,1,2这4个值,且取这4个值相应的概率依次为, 求常数C.

    正确答案:
    解析:

  • 第13题:

    设随机变量X的概率密度为
      
      对X独立地重复观察4次,用Y表示观察值大于的次数,求Y^2的数学期望.


    答案:
    解析:
    【简解】如果将观察X理解为试验,观察值大于理解为试验成功,则Y表示独立地重复试验4次成功的次数,即Y~B(4,p)
    其中

  • 第14题:

    设二维随机变量(X,Y)的联合分布律为
      
      则在Y=1的条件下求随机变量X的条件概率分布.


    答案:
    解析:
    【解】因为P(Y=1)=0.6,
    所以

  • 第15题:

    设随机变量X的概率密度为fx(x)=的概率密度为_______.


    答案:
    解析:

  • 第16题:

    设随机变量X与Y独立,其中X的概率分布为而Y的概率密度为f(y),求随机变量U=X+Y的概率密度g(u).


    答案:
    解析:
    【简解】本题是2003年数三的考题,考查一个离散型和一个连续型两个随机变量的函数的分布,随机变量的独立性等,
    先求分布函数

    由此得g(u)=0.3f(u-1)+0.7f(u-2).

  • 第17题:

    设二维随机变量(X,Y)的概率密度为

      求常数A及条件概率密度.


    答案:
    解析:

  • 第18题:

    设随机变量X的概率密度为令随机变量
      (Ⅰ)求Y的分布函数;
      (Ⅱ)求概率P{X≤Y}.


    答案:
    解析:
    【分析】
    Y是随机变量X的函数,只是这函数是分段表示的,这样得到的Y可能是非连续型,也非离散型,
    【解】(Ⅰ)设Y的分布函数为FYy),显然P{1≤Y≤2}=1,所以,
    当y<1时,FY(y)=P{Y≤y)=0;
    当1≤y<2时,FY(y)=P{Y≤y}=P{Y<1}+P{Y=1}+P{1
    当2≤y时,FY(y)=P{Y≤y}=P{Y≤2}=1.
    总之,Y的分布函数为

    (Ⅱ)因为Y=

  • 第19题:

    设随机变量X的概率分布为,则EX^2=________.


    答案:1、2
    解析:

  • 第20题:

    设随机变量x的概率密度为


    答案:D
    解析:


    由x的概率密度为
    可知x的数学期望μ=3,方差α2,则

  • 第21题:

    设随机变量X的概率密度为fX(x),随机变量Y的概率密度为fY(y),则二维随机变量(X、Y)的联合概率密度为fX(x)fY(y)。


    正确答案:错误

  • 第22题:

    离散型随机变量的数学期望()。

    • A、是随机变量出现概率最高的值
    • B、一定是x可以取的值,尽管它可能不是随机变量出现概率最高的值
    • C、是重复试验中随机变量的平均值
    • D、以上均错误

    正确答案:C

  • 第23题:

    多选题
    设随机变量X仅取n个值x1, x2,… xn,其概率函数为P(X=xi)=pi,则(  )。
    A

    -1≦pi≦1,i=1,2…,n 

    B

    pi≧0,i=1,2,…,n  

    C

    p1+p2+…+Pn≦1    

    D

    p1+p2+…+Pn=1


    正确答案: B,A
    解析: 暂无解析