有5个不同的自然数,它们当中任意3个的和是3的倍数,任意4个的和是4的倍数,那么满足以上条件的5个数的和最小是( )。A.96B.108C.116D.125

题目

有5个不同的自然数,它们当中任意3个的和是3的倍数,任意4个的和是4的倍数,那么满足以上条件的5个数的和最小是( )。

A.96

B.108

C.116

D.125


相似考题
更多“有5个不同的自然数,它们当中任意3个的和是3的倍数,任意4个的和是4的倍数,那么满足以上 ”相关问题
  • 第1题:

    有四个不同的正整数,其中任意两个数之和是2的倍数,任意三个数的和是3的倍数,满足条件的最小的四个正整数之和是:

    A.51

    B.38

    C.40

    D.42


    正确答案:C
    首先这4个数必须同奇偶,其次这4个数必须对于3同余则4个数必须对6同余;又要最小则4个数中最小的是1,所以1、7、13、19是满足条件的最小的四个正整数,和为40。

  • 第2题:

    有4个不同的自然数,它们当中任意两数的和是2的倍数;任意3个数的和是3的倍数,为了使得这4个数的和尽可能小,则这四个数的和为( )。

    A. 40
    B. 42
    C. 46
    D. 51

    答案:A
    解析:
    任意两个数的和是2的倍数,所以这些数的奇偶性相同。任意三个数的和是3的倍数,所以这些数除以3,所得余数必定相同(否则在三个数的和中换一个数,和将不是3的倍数)。于是, 这些数除以6所得余数相同,故这最小的四个数为1,7,13,19。所以这四个数的和为1 + 7 + 13 + 19 = 40。

  • 第3题:

    有4个不同的自然数,它们当中任意两数的和是2的倍数;任意3个数的和是3的倍数,为了使得这4个数的和尽可能小,则这四个数的和为(  )。
    A.40
    B.42
    C.46
    D.51


    答案:A
    解析:
    任意两个数的和是2的倍数,所以这些数的奇偶性相同;任意三个数的和是3的倍数,所以这些数除以3,所得余数必定相同(否则在三个数的和中换一个数,和将不是3的倍数)。于是这些数除以6所得余数相同,故这最小的四个数为1、7、13、19。所以这四个数的和为1+7+13+19=40。

  • 第4题:

    从任意的自然数中,至少选取()个数,才能保证一定有两个数的差是5的倍数?

    • A、2
    • B、6
    • C、8
    • D、12

    正确答案:B

  • 第5题:

    单选题
    如果a和b都是非零自然数,且a=8b,那么a和b的最小公倍数是()。
    A

    1

    B

    a

    C

    b


    正确答案: A
    解析: 暂无解析

  • 第6题:

    单选题
    有4个不同的自然数,他们当中任意两数的和是2的倍数,任意3个数的和是3的倍数,为了使这4个数的和尽可能小,则这4个数的和为()
    A

    40

    B

    42

    C

    46

    D

    51


    正确答案: D
    解析: 暂无解析

  • 第7题:

    在1,2,3…100这100个自然数中,取两个不同的数,使得它们的和是7的倍数,共有 ( )种不同的取法。

    A.700

    B.707

    C.697

    D.705


    正确答案:B
    [答案] B。解析:100÷7=14……2。在1~100中,按被7除的余数分为了类:余1与余2的各15个,余3、余4、余5、余6、整除的各14个。取两个不同的数,要使它们的和是7的倍数,必须是:一个余1一个余6,或一个余2一个余5,或一个余3一个余4,或两个都是整除。所以,不同的取法共有15×14+15×14+14×14+14×13÷2=707。

  • 第8题:

    盒中有8个球,上面分别写着2,3,4,5,7,8,10,12八个数,甲乙两人玩摸球游戏,下面规则中对双方都公平的是()。

    A.任意摸一球,是质数甲胜,是合数乙胜
    B.任意摸一球,是2的倍数甲胜,是3的倍数乙胜
    C.任意摸一球,小于5甲胜,大于5乙胜’
    D.任意摸一球,是奇数甲胜,是偶数乙胜

    答案:A
    解析:

  • 第9题:

    某自然数a是3的倍数,a-1是4的倍数,a-2是5的倍数,则a最小为(__)?

    A. 57
    B. 37
    C. 117
    D. 27

    答案:A
    解析:
    本题考查余数同余问题。代入验证,57,117符合题意,但是要找的是最小的,应选择57

  • 第10题:

    如果a和b都是非零自然数,且a=8b,那么a和b的最小公倍数是()。

    • A、1
    • B、a
    • C、b

    正确答案:B

  • 第11题:

    单选题
    有两个自然数,它们的和等于297,它们的最大公约数与最小公倍数之和等于693。这两个自然数的差等于多少?(  )
    A

    33

    B

    27

    C

    11

    D

    9


    正确答案: C
    解析:
    设这两个数是AM、BM,M是这两个数的最大公约数,其中A、B、M均为整数。AM+BM=(A+B)×M=297,M+A×B×M=(1+A×B)×M=693,所以M是297和693的公约数。297和693的最大公约数为99。99=32×11,把M=1,3,9,11,33,99分别代入两个式子试算。①(A+B)×1=297,(1+A×B)×1=693,无解;②(A+B)×3=297,(1+A×B)×3=693,无解;③(A+B)×9=297,(1+A×B)×9=693,无解;④(A+B)×11=297,(1+A×B)×11=693,无解;⑤(A+B)×33=297,(1+A×B)×33=693,此时A、B一个是4,一个是5;⑥(A+B)×99=297,(1+A×B)×99=693,无解。所以⑤符合题意,当M=33时,一个数是4×33=132,一个数是5×33=165,即这两个自然数的差为165-132=33。

  • 第12题:

    单选题
    脉冲转换增压适用的最佳缸数是()。
    A

    三的整倍数

    B

    四的整倍数

    C

    五的整倍数

    D

    任意缸数


    正确答案: C
    解析: 暂无解析