更多“用逆矩阵的方法只能求解含n个未知量n个方程且系数矩阵可逆的线性方程组.”相关问题
  • 第1题:

    若A是m×n矩阵,且m≠n,则当R(A)=n时,齐次线性方程组AX=0只有零解


    答案:对
    解析:

  • 第2题:

    非齐次线性方程组Ax=b中未知量个数为n,方程个数为m,系数矩阵A的秩为r,则

    A.r=m时,方程组A-6有解.
    B.r=n时,方程组Ax=b有唯一解.
    C.m=n时,方程组Ax=b有唯一解.
    D.r

    答案:A
    解析:
    因为A是m×n矩阵,若秩r(A)=m,则m=r(A)≤r(A,b)≤m.于是r(A)=r(A,b).故方程组有解,即应选(A).或,由r(A)=m,知A的行向量组线性无关,那么其延伸必线性无关,故增广矩阵(A,b)的m个行向量也是线性无关的,亦知r(A)=r(A,b).关于(B)、(D)不正确的原因是:由r(A)=n不能推导出r(A,b)=n(注意A是m×n矩阵,m可能大于n),由r(A)=r亦不能推导出r(A,b)=r,你能否各举一个简单的例子?至于(C),由克拉默法则,r(A)=n时才有唯一解,而现在的条件是r(A)=r,因此(C)不正确,

  • 第3题:

    设n阶矩阵A的伴随矩阵A^*≠0,若ζ1,ζ2,ζ3,ζ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系

    A.不存在.
    B.仅含一个非零解向量.
    C.含有两个线性无关的解向量.
    D.含有三个线性无关的解向量.

    答案:B
    解析:

  • 第4题:

    非齐次线性方程组Ax=B中未知变量的个数为n,方程的个数为m,系数矩阵A的秩为r,则下列说法正确的是( )。


    答案:D
    解析:
    非齐次方程组解的判定需要验证r(A)是否等于r(A,b),A,B,C都无法判断。D项:r=m时,r(A)=r(A,b)=m,方程组必有解.

  • 第5题:

    非齐线性方程组AX=b中未知量的个数为n,方程的个数为m,系数矩阵A的秩为r,则( )。

    A 当r=m时,方程组AX=b有解
    B 当r=n时,方程组AX=b有惟一解
    C 当m=n时,方程组AX=b有惟一解
    D 当r<n时,方程组AX=b有无穷多解

    答案:A
    解析:
    系数矩阵A是m×n矩阵,增个矩阵B是m×(n+1)矩阵当R(A)=r=m时,由于R(B)≥R(A)=m,而B仅有m行,故有R(B)≤m,从而R(B)=m,即R(A)=R(B),方程组有解

  • 第6题:

    设A1,A2分别为m阶,n阶可逆矩阵,分块矩阵.证明:A可逆,且


    答案:
    解析:

  • 第7题:

    设n阶矩阵A可逆,且detA=a,求,.


    答案:
    解析:

  • 第8题:

    设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r(A)=r

    答案:
    解析:

  • 第9题:

    用平面一般力系的平衡方程求解单低频刚体的平衡问题,只能写出()个独立方程,求解三个未知量。


    正确答案:

  • 第10题:

    单选题
    求解线性方程组的平方根法,要求其系数矩阵为( )。
    A

    三对角矩阵

    B

    上三角矩阵

    C

    对称正定矩阵

    D

    各类大型稀疏矩阵


    正确答案: D
    解析: 暂无解析

  • 第11题:

    单选题
    求解线性方程组的追赶法,要求其系数矩阵为( )。
    A

    三对角矩阵

    B

    上三角矩阵

    C

    对称正定矩阵

    D

    各类大型稀疏矩阵


    正确答案: B
    解析: 暂无解析

  • 第12题:

    单选题
    对于m个发点、n个收点的运输问题,叙述错误的是()
    A

    该问题的系数矩阵有m×n列

    B

    该问题的系数矩阵有m+n行

    C

    该问题的系数矩阵的秩必为m+n-1

    D

    该问题的最优解必唯一


    正确答案: D
    解析: 暂无解析

  • 第13题:

    若A是m×n矩阵,且m≠n,则当R(A)=m时,非齐次线性方程组AX=b,有解


    答案:对
    解析:

  • 第14题:

    设n阶矩阵A与对角矩阵相似,则().

    A.A的n个特征值都是单值
    B.A是可逆矩阵
    C.A存在n个线性无关的特征向量
    D.A一定为n阶实对称矩阵

    答案:C
    解析:
    矩阵A与对角阵相似的充分必要条件是其有n个线性无关的特征向量,A有n个单特征值只是其可对角化的充分而非必要条件,同样A是实对称阵也是其可对角化的充分而非必要条件,A可逆既非其可对角化的充分条件,也非其可对角化的必要条件,选(C).

  • 第15题:

    设n元齐次线性方程组Ax=0的系数矩阵A的秩为r,则Ax=0有非零解的充要条件为( )。

    A.r=n
    B.r<n
    C.r≥n
    D.r>n

    答案:B
    解析:
    Ax=0有非零解的充要条件为|A|=0,即矩阵A不是满秩的,r<n。

  • 第16题:

    设A为m×n阶矩阵,且r(A)=mAA的任意m个列向量都线性无关
    BA的任意m阶子式都不等于零
    C非齐次线性方程组AX=b一定有无穷多个解
    D矩阵A通过初等行变换一定可以化为


    答案:C
    解析:
    显然由r(A)=mm

  • 第17题:

    用矩阵分块的方法,证明矩阵可逆,并求其逆矩阵.


    答案:
    解析:

  • 第18题:

    已知非齐次线性方程组 有3个线性无关的解. (Ⅰ)证明方程组系数矩阵A的秩; (Ⅱ)求的值及方程组的通解


    答案:
    解析:

  • 第19题:

    利用逆矩阵,解线性方程组


    答案:
    解析:

  • 第20题:

    对于m个发点、n个收点的运输问题,叙述错误的是()

    • A、该问题的系数矩阵有m×n列
    • B、该问题的系数矩阵有m+n行
    • C、该问题的系数矩阵的秩必为m+n-1
    • D、该问题的最优解必唯一

    正确答案:D

  • 第21题:

    用平面一般力系的平衡方程求解单个刚体的平衡问题,只能写出三个独立方程,求解()个未知量。


    正确答案:

  • 第22题:

    填空题
    设n阶矩阵A的各行元素之和均为零,且A的秩为n-1,则线性方程组AX=O的通解为____.

    正确答案: X=k(1,1…,1)T
    解析:
    由r(A)=n-1,知方程组AX=0的基础解系只含有n-(n-1)=1个解向量.又矩阵A的各行元素之和为0,知(1,1,…,1)T,为AX=0的非零解,则方程组AX=0的通解为X=k(1,1…,1)T

  • 第23题:

    单选题
    非齐次线性方程组AX(→)=b(→)中未知数个数为n,方程个数为m,系数矩阵A的秩为r,则(  )。
    A

    r=m时,方程组AX()b()有解

    B

    r=n时,方程组AX()b()有唯一解

    C

    m=n时,方程组AX()b()有唯一解

    D

    r<n时,方程组AX()b()有无穷多解


    正确答案: A
    解析:
    A项,由于r=m,则方程组AX()b()的增广矩阵化为阶梯形矩阵时,阶梯形矩阵不为0的行数为m,r(A)=r(A(_))=m,所以AX()b()有解;
    B项,当r=n时,可知n≤m,当n<m时,则方程组AX()b()不一定只有唯一解;
    C项,当m=n时,r(A(_))不一定等于r,方程组不一定有解;
    D项,当r<n时,不能保证r(A)=r(A(_))=r,方程组AX()b()不一定有解。

  • 第24题:

    问答题
    设A为m×n矩阵(n<m),且AX=b有唯一解,证明:矩阵ATA为可逆矩阵,且方程组AX(→)=b(→)的解为X(→)=(ATA)-1ATb(→)(AT为A的转置矩阵)。

    正确答案:
    由AX()=b()有唯一解知r(A)=r(A┆b())=n,因此AX()=0()只有零解。
    若r(ATA)TAX()=0()有非零解,即存在X()0≠0使ATAX()0=0()。所以有X()0TATAX()0=(AX()0)TAX()0=0(),即AX()0=0()。于是方程组AX()=0()有非零解,这与AX()=0()只有零解矛盾,故r(ATA)=n,即ATA可逆。
    由AX()=b()得,ATAX()=ATb(),有X()=(ATA)-1ATb()。如果η()1,η()2,…,η()t是线性方程组AX()=b()的解,则u1η()1+u2η()2+…+utη()t也是AX()=b()的一个解。其中u1+u2+…+ut=1。
    因为η()1,η()2,…,η()t是AX()=b()的解,所以η()2-η()1,η()3-η()1,…,η()t-η()1是AX()=0()的解。
    由u1+u2+…+ut=1,得u1=1-u2-u3…-ut,所以有u1η()1+u2η()2+…+utη()t=(1-u2-u3-…-ut)η()1+u2η()2+…+utη()t=η()1+u2(η()2-η()1)+u3(η()3-η()1)+…+ut(η()t-η()1),即u1η()1+u2η()2+…+utη()t也是AX()=b()的解。
    解析: 暂无解析