更多“设A是3×4矩阵,A的秩为1,则齐次线性方程组Ax=0的一个基础解系中含有解的个数为”相关问题
  • 第1题:

    对于有5个变量的齐次线性方程组AX=0,系数矩阵的秩r(A)=3,则其基础解析中向量个数为()。

    A.2

    B.5

    C.3

    D.1


    正确答案:A

  • 第2题:

    设A是4×5矩阵,ξ1,ξ2是齐次线性方程组Ax=0的基础解系,则下列结论正确的是( ).

    A.ξ1-ξ2,ξ1+2ξ2也是Ax=0的基础解系
    B.k1ξ1+k1ξ2是Ax=0的通解
    C.k1ξ1+ξ2是Ax=0的通解
    D.ξ1-ξ2,ξ2-ξ1也是Ax=0的基础解系

    答案:A
    解析:
    由题设知道,n=5,s=n-r=2,r=3.B不正确,因为k1ξ1+k1ξ2=k1(ξ2+ξ1)只含有一个不定常数,同样理由说明C也不正确.D不正确,因为(ξ1-ξ2)+(ξ1+ξ2)=0,这表明ξ1-ξ2与ξ2-ξ1线性相关.A正确,因为ξ1-ξ2与ξ1+2ξ2都是Ax=0的解,且它 们线性无关,故选A.

  • 第3题:

    设有齐次线性方程组Ax=0和Bx=0, 其中A,B均为 矩阵,现有4个命题: ① 若Ax=0的解均是Bx=0的解,则秩(A) 秩(B); ② 若秩(A) 秩(B),则Ax=0的解均是Bx=0的解; ③ 若Ax=0与Bx=0同解,则秩(A)=秩(B); ④ 若秩(A)=秩(B), 则Ax=0与Bx=0同解


    A.① ②
    B.① ③
    C.② ④
    D.③ ④


    答案:B
    解析:

  • 第4题:

    设A是m×n阶矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是( )。

    A.若Ax=0仅有零解,则Ax=b有惟一解
    B.若Ax=0有非零解,则Ax=b有无穷多个解
    C.若Ax=b有无穷多个解,则Ax=0仅有零解
    D.若Ax=b有无穷多个解,则Ax=0有非零解

    答案:D
    解析:

  • 第5题:

    设n元齐次线性方程组Ax=0的系数矩阵A的秩为r,则Ax=0有非零解的充要条件为( )。

    A.r=n
    B.r<n
    C.r≥n
    D.r>n

    答案:B
    解析:
    Ax=0有非零解的充要条件为|A|=0,即矩阵A不是满秩的,r<n。

  • 第6题:

    设(Ⅰ)和(Ⅱ)是两个四元齐次线性方程组,(Ⅰ)为,(Ⅱ)有一个基础解系(0,1,1,0)T,(-1,2,2,1)T.求(Ⅰ)和(Ⅱ)的全部公共解


    答案:
    解析:

  • 第7题:

    设A是4×6矩阵,则齐次线性方程组AX=0解的情况是()。

    • A、无解
    • B、只有零解
    • C、有非零解
    • D、不一定

    正确答案:C

  • 第8题:

    单选题
    设A为4阶方阵,且r(A)=2,A*为A的伴随矩阵,则A*X(→)=0(→)的基础解系所含的解向量的个数为(  )。
    A

    1

    B

    2

    C

    3

    D

    4


    正确答案: B
    解析:
    由r(A)=2<4-1=3,故r(A*)=0,即A*=0,则方程组A*X()0()的基础解系含4-0=4个解向量。

  • 第9题:

    问答题
    设AX=0与BX=0均为n元齐次线性方程组,秩r(A)=r(B),且方程组AX=0的解均为方程组BX=0的解,证明方程组AX=0与BX=0同解.

    正确答案:
    设r(A)=r(B)=r,方程组AX=0的基础解系为①:ζ12,…,ζn-r,方程组BX=0的基础解系为②:η12,…,ηn-r.
    构造向量组③:ζ12,…,ζn-r12,…,ηn-r.
    由向量组①可由②线性表示,则向量组②和③等价,从而r(③)=n-r,所以ζ12,…,ζn-r是向量组③的极大线性无关组,有η12,…,ηn-r可由ζ12,…,ζn-r线性表示,即BX=0的任一解都可由ζ12,…,ζn-r线性表示,故BX=0的解都是AX=0的解,所以方程组AX=0与BX=0同解.
    解析: 暂无解析

  • 第10题:

    单选题
    设n元齐次线性方程组AX(→)=0(→),秩(A)=n-3,且α(→)1,α(→)2,α(→)3为其3个线性无关的解,则(  )为其基础解系。
    A

    α()1α()2α()2α()3α()1α()3

    B

    α()1α()2α()2α()3α()3α()1

    C

    α()1α()2α()3α()3α()2α()1+2α()3

    D

    α()1α()2,2α()2-3α()3,3α()3-2α()1


    正确答案: C
    解析:
    B项,因(α()1α()2)+(α()2α()3)+(α()3α()1)=0(),故其线性相关,不能构成AX()0()的基础解系。同理由(α()1α()2α()3)+(α()3α()2)-(α()1+2α()3)=0(),2(α()1α()2)+(2α()2-3α()3)+(3α()3-2α()1)=0()知C、D项的向量组都线性相关。

  • 第11题:

    设A为矩阵,都是线性方程组Ax=0的解,则矩阵A为:


    答案:D
    解析:
    提示:a1,a2是方程组Ax=0的两个线性无关的解,方程组含有3个未知量,帮矩阵A的秩R(A)=3-2=1,而选项A、B、C的秩分别为3、2、2,均不符合要求。将选项D代入

  • 第12题:

    设有齐次线性方程组Ax=0和Bx=0, 其中A,B均为矩阵,现有4个命题:① 若Ax=0的解均是Bx=0的解,则秩(A)秩(B);② 若秩(A)秩(B),则Ax=0的解均是Bx=0的解;③ 若Ax=0与Bx=0同解,则秩(A)=秩(B);④ 若秩(A)=秩(B), 则Ax=0与Bx=0同解,以上命题中正确的是

    A.① ②
    B.① ③
    C.② ④
    D.③ ④

    答案:B
    解析:

  • 第13题:

    非齐次线性方程组Ax=b中未知量个数为n,方程个数为m,系数矩阵A的秩为r,则

    A.r=m时,方程组A-6有解.
    B.r=n时,方程组Ax=b有唯一解.
    C.m=n时,方程组Ax=b有唯一解.
    D.r

    答案:A
    解析:
    因为A是m×n矩阵,若秩r(A)=m,则m=r(A)≤r(A,b)≤m.于是r(A)=r(A,b).故方程组有解,即应选(A).或,由r(A)=m,知A的行向量组线性无关,那么其延伸必线性无关,故增广矩阵(A,b)的m个行向量也是线性无关的,亦知r(A)=r(A,b).关于(B)、(D)不正确的原因是:由r(A)=n不能推导出r(A,b)=n(注意A是m×n矩阵,m可能大于n),由r(A)=r亦不能推导出r(A,b)=r,你能否各举一个简单的例子?至于(C),由克拉默法则,r(A)=n时才有唯一解,而现在的条件是r(A)=r,因此(C)不正确,

  • 第14题:

    设n阶矩阵A的伴随矩阵A^*≠0,若ζ1,ζ2,ζ3,ζ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系

    A.不存在.
    B.仅含一个非零解向量.
    C.含有两个线性无关的解向量.
    D.含有三个线性无关的解向量.

    答案:B
    解析:

  • 第15题:

    非齐次线性方程组Ax=B中未知变量的个数为n,方程的个数为m,系数矩阵A的秩为r,则下列说法正确的是( )。


    答案:D
    解析:
    非齐次方程组解的判定需要验证r(A)是否等于r(A,b),A,B,C都无法判断。D项:r=m时,r(A)=r(A,b)=m,方程组必有解.

  • 第16题:

    设A为矩阵,都是齐次线性方程组Ax=0的解,则矩阵A为( )。



    答案:D
    解析:
    提示:由于线性无关,故R(A)= 1,显然选项A中矩阵秩为3,选项B和C中矩阵秩都为2。

  • 第17题:

    单选题
    设A是4×6矩阵,则齐次线性方程组AX=0解的情况是()。
    A

    无解

    B

    只有零解

    C

    有非零解

    D

    不一定


    正确答案: A
    解析: AX=0有非零解的充要条件是R(A)<6,而4×6矩阵的秩R(A)≤4,故AX=0有非零解,故选(C)。

  • 第18题:

    填空题
    设A为4阶方阵,且r(A)=2,A*为A的伴随矩阵,则A*X=0的基础解系所含的解向量的个数为____.

    正确答案: 4
    解析:
    由r(A)=2<4-1=3,故r(A*)=0,即A*=0,则方程组A*X=0的基础解系含4-0=4个解向量.

  • 第19题:

    单选题
    非齐次线性方程组AX(→)=b(→)中未知数个数为n,方程个数为m,系数矩阵A的秩为r,则(  )。
    A

    r=m时,方程组AX()b()有解

    B

    r=n时,方程组AX()b()有唯一解

    C

    m=n时,方程组AX()b()有唯一解

    D

    r<n时,方程组AX()b()有无穷多解


    正确答案: A
    解析:
    A项,由于r=m,则方程组AX()b()的增广矩阵化为阶梯形矩阵时,阶梯形矩阵不为0的行数为m,r(A)=r(A(_))=m,所以AX()b()有解;
    B项,当r=n时,可知n≤m,当n<m时,则方程组AX()b()不一定只有唯一解;
    C项,当m=n时,r(A(_))不一定等于r,方程组不一定有解;
    D项,当r<n时,不能保证r(A)=r(A(_))=r,方程组AX()b()不一定有解。