更多“(1)求F(x)所满足的一阶微分方程; ”相关问题
  • 第1题:

    设f(x)、f'(x)为已知的连续函数,则微分方程y'+ f'(x)y = f(x)f'(x)的通解是:


    答案:C
    解析:
    提示:对关于y、y'的一阶线性方程求通解。其中P(x)=f'(x)、Q(x)=f(x) * f'(x),

  • 第2题:

    设f(x),f'(x)为已知的连续函数,则微分方程y'十f'(x)y=f(x)f'(x)的通解是:
    A. y=f(x)+ce-f(x) B. y= f(x)ef(x) -ef(x) +c
    C. y=f(x)-1+ce-f(x) D. y=f(x)-1+cef(x)


    答案:C
    解析:
    提示:对关于y、y'的一阶线性方程求通解。其中p(x)=f'(x)、Q(x) =f(x)*f'(x) 利

  • 第3题:

    设连续型随机变量X的分布函数为F(x)=
      (1)求常数A,B;(2)求X的密度函数f(x);(3)求P


    答案:
    解析:

  • 第4题:

    设非负函数满足微分方程,当曲线过原点时,其与直线x=1及y=0围成平面区域D的面积为2,求D绕y轴旋转所得旋转体的体积


    答案:
    解析:

  • 第5题:

    设函数y(x)是微分方程满足条件y(0)=0的特解.
      (Ⅰ)求y(x);
      (Ⅱ)求曲线y=y(x)的凹凸区间及拐点.


    答案:
    解析:

  • 第6题:

    设F(χ)=f(χ)g(χ),其中函数f(χ),g(χ)在(-∞,+∞)内满足以下条件: f’(χ)=g(χ),g’(χ)=f(χ),且f(0)=0,f(χ)+g(χ)=2eχ。 (1)求F(χ)所满足的一阶微分方程; (2)求出F(χ)的表达式。


    答案:
    解析:

  • 第7题:

    微分方程cosydx+(1+e-x)sinydy=0满足初始条件y x=0=π/3的特解是( )。


    答案:A
    解析:
    提示:方法1求解微分方程,得通解1+ex==Ccosy,再代入初始条件,C= 4, 应选A。方法2代入方程和初始条件检验,可知应选A。

  • 第8题:

    求微分方程y″+3y′=3x的通解.


    答案:
    解析:

  • 第9题:

    下列一阶微分方程中,哪一个是一阶线性方程()?

    • A、(xey-2y)dy+eydx=0
    • B、xy′+y=ex+y
    • C、[x/(1+y)]dx-[y/(1+x)]dy=0
    • D、dy/dx=(x+y)/(x-y)

    正确答案:A

  • 第10题:

    单选题
    设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为(  )。
    A

    f″(x)+f(x)=0

    B

    f′(x)+f(x)=0

    C

    f″(x)+f′(x)=0

    D

    f″(x)+f′(x)+f(x)=0


    正确答案: A
    解析:
    由f′(x)=f(π/2-x),两边求导得f″(x)=-f′(π/2-x)=-f[π/2-(π/2-x)]=-f(x),即f″(x)+f(x)=0。

  • 第11题:

    问答题
    设微分方程由通解y=(C1+C2x+x-1)e-x,求此微分方程。

    正确答案:
    已知y=(C1+C2x+x-1)e-x,求导得
    y′=-(C1+C2x+x-1)e-x+(C2-x-2)e-x=-y+(C2-x-2)e-x,
    y″=-y′+2x-3e-x-(C2-x-2)e-x=-y′+2x-3e-x-y′-y=-2y′+2x-3e-x-y,整理后可得到所求微分方程y″+2y′+y=2x-3e-x=2e-x/x3
    解析: 暂无解析

  • 第12题:

    单选题
    设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为(  )。
    A

    f′(x)+f(x)=0

    B

    f′(x)-f(x)=0

    C

    f″(x)+f(x)=0

    D

    f″(x)-f(x)=0


    正确答案: D
    解析:
    由f′(x)=f(π/2-x),两边求导得f″(x)=-f′(π/2-x)=-f[π/2-(π/2-x)]=-f(x),即f″(x)+f(x)=0。

  • 第13题:

    微分方程y''+ay'2=0满足条件y x=0=0,y' x=0=-1的特解是:


    答案:A
    解析:
    提示:本题为可降阶的高阶微分方程,按不显含变量x计算。设y'= P,y''=p',方程化为

    条件,求出特解。

  • 第14题:

    求微分方程满足初始条件的特解


    答案:
    解析:

  • 第15题:

    设随机变量X的密度函数为f(x)=
      (1)求常数A;(2)求X在内的概率;(3)求X的分布函数F(x).


    答案:
    解析:

  • 第16题:

    设随机变量X满足|X|≤1,且P(X=-1)=,P(X=1)=,在{-1  (1)求X的分布函数;(2)求P(X<0).


    答案:
    解析:

  • 第17题:

    已知微分方程y’+y=f(x),其中f(x)是R上的连续函数.
      (Ⅰ)若f(x)=x,求方程的通解.
      (Ⅱ)若f(x)是周期为T的函数,证明:方程存在唯一的以T为周期的解.


    答案:
    解析:
    【解】(Ⅰ)若f(x)=x,则方程为y'+y=x通解为


    (Ⅱ)设y(x)为方程的任意解,则y'(x+T)+y(x+T)=f(x+T).
    而f(x)周期为T,有f(x+T)=f(x).又y'(x)+y(x)=f(x).
    因此y'(x+T)+y(x+T)-y'(x)-y(x)=0,有(e^x[y(x+T)-y(x)])'=0,
    即e^x[y(x+T)=y(x)]=C.取C=0得y(x+T)-y(x)=0,
    y(x)为唯一以T为周期的解.

  • 第18题:



    (1)求f(x)和g(x)围成的平面区域的面积.?
    (2)求0≤y≤f(x), 1≤x≤3,绕y轴旋转的体积.?


    答案:
    解析:

  • 第19题:



    (1)求曲线y=f(x);
    (2)求由曲线y=f(x),y=0,x=1所围图形绕x轴旋转一周所得旋转体体积.


    答案:
    解析:

  • 第20题:

    已知向量m=(sinx,cosx),n=(cosx,cosx),f(x)=m*n,
    (1)求函数f(x)的最小正周期:
    (2)若f(x)≥1,求f(x)的取值范围。


    答案:
    解析:

  • 第21题:

    问答题
    设f(x)在[0,1]上具有二阶导数,且满足条件|f(x)|≤a,|f″(x)|≤b(其中a、b都是非负常数),c是(0,1)内任一点。  (1)写出f(x)在点x=c处带拉格朗日余项的一阶泰勒公式;  (2)证明:|f′(c)|<2a+b/2。

    正确答案:
    (1)f(x)在x=c处带拉格朗日余项的一阶泰勒公式为f(x)=f(c)+f′(c)(x-c)+f″(ξ)(x-c)2/(2!),其中ξ介于x和c之间。
    (2)证明:在(1)中所得结论中,令x=0得
    f(0)=f(c)+f′(c)(-c)+f″(ξ1)c2/(2!)①
    令x=1得
    f(1)=f(c)+f′(c)(1-c)+f″(ξ2)(1-c)2/(2!)②
    ②-①得f(1)-f(0)=f′(c)+[(1-c)2f″(ξ2)-c2f″(ξ1)]/2,则
    ,f′(c),=,f(1)-f(0)-[(1-c)2f″(ξ2)-c2f″(ξ1)]/2,≤,f(1),+,f(0),+,f″(ξ2),(1-c)2/2+c2,f″(ξ1),/2≤a+a+b[(1-c)2+c2]/2
    又02+c2<1,则,f′(c),<2a+b/2。
    解析: 暂无解析

  • 第22题:

    填空题
    设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为____。

    正确答案: f″(x)+f(x)=0
    解析:
    由f′(x)=f(π/2-x),两边求导得f″(x)=-f′(π/2-x)=-f[π/2-(π/2-x)]=-f(x),即f″(x)+f(x)=0。

  • 第23题:

    问答题
    设二阶线性微分方程y″+P(x)y′+Q(x)y=f(x)的三个特解是y1=x,y2=ex,y3=e2x,试求此方程满足条件y(0)=1,y′(0)=3的特解。

    正确答案:
    由题意可知,Y1=ex-x、Y2=e2x-x是原方程对应齐次方程的两个线性无关的解[因(ex-x)/(e2x-x)≠常数],故原方程的通解为y=C1(ex-x)+C2(e2x-x)+x,由y(0)=1,y′(0)=3,得C1=-1,C2=2。故所求原方程的特解为y=-(ex-x)+2(e2x-x)+x=2e2x-ex
    解析: 暂无解析