更多“甲、乙两人同时从同一地点出发沿同一环形跑道进行健身锻炼,甲跑步,乙走路。若甲追上乙所需时间是两人相向而行相遇所需时间的3倍,则甲、乙的速度之比是:”相关问题
  • 第1题:

    周长为400米的圆形跑道上, 有相距100米的A、B两点, 甲乙两人分别从A、B两点同时相背而跑, 两人相遇后, 乙即转身与甲同向而跑步, 当甲跑到A时, 乙恰好跑到B。如果以后甲、乙跑的速度方向都不变,那么甲追上乙时,甲从出发开始,共跑了( )米。

    A.600

    B.800

    C.900

    D.1000


    正确答案:D
    13.D【解析】乙从相遇点C跑回B点时,甲从C过B到A,他比乙多跑了100米,乙从B到C时, 甲从A到C, 说明A到C比B到C多100米, 跑道周长400米, 所以8到C是100米,A到C是200米,甲跑200米,比乙多100米。甲追上乙要多跑300=400—100(米),所以甲要跑200X 3=600(米),加上开始跑的一圈,甲共跑600+400=1000(米)。

  • 第2题:

    跑马场一周之长为1080米。甲、乙两人骑自行车从同一地点同时出发,朝同一方向行驶,经过54分后,甲追上了乙。如果甲每分减少50米,乙每分增加30米,从同一地点同时背向而行,则经过3分后两人相遇。原来甲、乙两人每分各行多少米?( )

    A.200 180

    B.360 240

    C.240 200

    D.240 180


    正确答案:A

  • 第3题:

    甲、乙两人在圆形跑道上,同时从某地出发沿相反方向跑步。甲的速度是乙的3倍,他们第一次与第二次相遇地点之间的较短的跑道长度是100m。那么,圆形跑道的周长是( )m。

    A. 200
    B. 300
    C. 400
    D. 500

    答案:C
    解析:
    第一次相遇后,两人仍是沿相反方向跑步,到第二次相遇时,两人跑步距离之和为圆形跑道的周长。此时,乙跑的距离为较短的跑道,为100米,则甲跑的距离为300米,圆形跑道的周长为100 + 300 = 400(米)。故选 C。

  • 第4题:

    环形跑道的周长为400米,甲乙两人骑车同时从同一地点出发,匀速相向而行,16秒后甲乙相遇。相遇后,乙立即调头,6分40秒后甲第一次追上乙,问甲追上乙的地点距原来的起点多少米?

    A. 8
    B. 20
    C. 180
    D. 192

    答案:D
    解析:

  • 第5题:

    小李和老张同时在同一点沿同一环形跑道健身锻炼,小李跑步,老张慢走。若同向而行,小李追上老张所需时间是两人相向而行相遇所需时间的x倍。假设两人运动均为匀速,且小李跑步是老张慢走速度的y倍,则下列能反映y与x关系的是:

    A.如图所示
    B.如图所示
    C.如图所示
    D.如图所示

    答案:D
    解析:
    第一步,本题考查函数问题,需结合行程问题中的相遇追及问题的相关知识解题。
    第二步,设小张的速度为v,则小李的速度为yv,相遇问题公式S=(V李+V张)×T1=(y+1)vT1,追击问题公式S=(V李-V张)×T2=(y-1)vT2,

    代入特殊值确定函数图像,当y=2时,x=3;当y=3时,x=2;当y=4时,x=5/3;当y=5时,x=3/2。随着y值的增大x值逐渐减小,排除A选项,变化不成比例,不为直线,排除B选项,随着y值的增大,x值减少的趋势变小,排除C选项,只有D选项符合。
    因此,选择D选项。

  • 第6题:

    A、B两地间有条公路,甲、乙两人分别从A、B两地出发相向而行,甲先走半小时后,乙才出发,一小时后两人相遇,甲的速度是乙的2/3。甲、乙所走的路程之比是(  )。

    A.5:6
    B.1:1
    C.6:5
    D.4:3

    答案:B
    解析:
    设甲的速度为2,则乙的速度为3。甲先走了半小时,路程是2×0.5=1。此后甲、乙各走一小时,路程分别是2、3,则甲、乙所走的路程都是3,二者之比为1:1。

  • 第7题:

    跑马场周长为1080米。甲、乙两人骑自行车从同一地点同时出发,朝同一方向行驶,经过54分钟后,甲追上了乙。如果甲每分钟减少50米,乙每分钟增加30米,从同一地点同时背向而行,则经过3 分钟后两人相遇。原来甲、乙两人每分钟各行多少米?( )
    A. 200 180 B. 360 240 C. 240 200 D. 240 180


    答案:A
    解析:
    ①现在甲、乙每分钟共行:1080/3=360(米)。
    ②设甲现在每分钟行x米,则原来每分钟行(x+50)米;乙现在每分钟行(360-x)米,原来每分钟行 (360-x-30)米。列方程得
    (x+ 50)X54-(360-x- 30) X 54 = 1080,解得x= 150。
    甲原来每分钟行150 + 50 = 200(米);乙原来每分钟行360-150 - 30 = 180(米)。故本题正确答案为A。

  • 第8题:

    甲、乙两人分别从A、B两地同时出发,已知两者速度之比为7 :5,若两人同向而行,甲追上乙需要3小时。若两人相向而行,则两人几小时后相遇?()


    A.0.5小时
    B.1小时
    C.1.5小时
    D.2小时

    答案:A
    解析:
    令甲、乙二人速度分别为7千米/小时和5千米/小时,则AB两地相距(7-5)×3==6(千米)。若两人相向而行,则两人将在6÷(7+5)=0.5(小时)后相遇。

  • 第9题:

    单选题
    一个长方形的跑道,宽50米,长100米,甲乙两人在跑道上跑步,若两人同时同地背向出发,经30秒后相遇,若两人同时同地同向出发,经过75秒钟后,甲追上乙。现在两人在同一地点顺时针跑步,乙提前1分钟出发,问再经过多少秒甲才能追上乙?()
    A

    35

    B

    40

    C

    45

    D

    50


    正确答案: A
    解析: 暂无解析

  • 第10题:

    甲、乙两人都以不变的速度在环形路上跑步,如果同时同地出发,相向而行,每隔2min相遇一次;如果同向而行,每隔6min相遇一次,已知甲比乙跑得快,甲乙二人每分钟各跑多少圈?

  • 第11题:

    甲、乙两人联系跑步,若让乙先跑12米,则甲经6秒追上乙,若乙比甲先跑2秒,则甲要5秒追上乙,如果乙先跑9秒,甲再追乙,那么10秒后,两人相距多少米?( )

    A.15

    B.20

    C.25

    D.30


    正确答案:C
    甲乙的速度差为12÷6=2米/秒,则乙的速度为2×5÷2=5米/秒,如果乙先跑9秒,甲再追乙,那么10秒后,两人相距5×9-2×10=25米。

  • 第12题:

    甲、乙两人同时从图书馆走向教室,甲一半路程步行,一半路程跑步;乙一半时间步行,一 半时间跑步,若两人步行、跑步的速度均相同,则( )。

    A.甲先到教室
    B.乙先到教室
    C.甲和乙同时到教室
    D.无法判断

    答案:B
    解析:
    跑步比走路快,乙用一半的时间跑步,则跑步经过的路程占总路程的一半以上。图书馆到教室的总路程是一定的,甲一半的路程跑步,而乙一半以上的路程在跑步,所以乙用的时间较短,先到教室。

  • 第13题:

    如图,在长方形跑道上,甲、乙两人分别从A、C处同时出发,按顺时针方向沿跑道匀速奔跑。已知甲、乙两人的速度分别为5米/秒、4.5米/秒。则当甲第一次追上乙时,甲沿长方形跑道跑过的圈数是:


    A.4
    B.4.5
    C.5
    D.5.5

    答案:C
    解析:
    起跑时,甲、乙相距20+12=32米,甲每秒比乙多跑5-4.5=0.5米,故甲第一次追上乙需要32/0.5=64秒。跑道一圈为(20+12)x2=64米,故甲第一次追上乙时,甲跑了64x5/64=5圈。

  • 第14题:

    甲和乙在长400米的环形跑道上匀速跑步,如两人同时从同一点出发相向而行.则第一次相遇的位置距离出发点有l50米的路程;如两人同时从同一点出发同向而行,跑得快的人第一次追上另一人时跑了(  )米。

    A.600
    B.800
    C.1000
    D.1200

    答案:C
    解析:
    由题意可假设甲的速度为150米/秒,则乙的速度为250米/秒,甲、乙速度差为100米/秒,乙追上甲需要400÷100=4(,秒),则所求为250×4=1000(米)。

  • 第15题:

    甲乙两人从P,Q两地同时出发相向匀速而行,5小时后于M点相遇。若其他条件不变,甲每小时多行4千米,乙速度不变,则相遇地点距M点6千米;若甲速度不变,乙每小时多行4千米,则相遇地点距M点12千米,则甲乙两人最初的速度之比为:
    A 2:1
    B 2:3
    C 5:8
    D 4:3


    答案:A
    解析:

  • 第16题:

    有一个400米环形跑道,甲、乙两人同时从同一地点同方向出发,甲以0.8米/秒的速度步行,乙以2.4米/秒的速度跑步,乙在第2次追上甲时用了( )秒

    A.200
    B.210
    C.230
    D.250
    E.500

    答案:E
    解析:
    乙第2次追上甲时,乙比甲多跑了2圈,即多跑了800米,故所用时间为800/(2.4-0.8)=500(秒)

  • 第17题:

    单选题
    甲、乙两人练习跑步,若让乙先跑12米,则甲经6秒追上乙;若乙比甲先跑2秒,则甲要5秒追上乙;如果乙先跑9秒,甲再追乙,那么10秒后,两人相距多少米?(  )。
    A

    15

    B

    20

    C

    25

    D

    30


    正确答案: C
    解析:
    甲、乙的速度差为12÷6=2米/秒,则乙的速度为2×5÷2=5米/秒,如果乙先跑9秒,甲再追乙,那么10秒后,两人相距5×9-2×10=25米。