有120名学生报考语文、数学、英语竞赛,已知现在有35人报考语文竞赛,45人报考数学竞赛,55人报考英语竞赛,其中30人同时报考了语文和数学竞赛,26人同时报考了语文和英语竞赛,38人同时报考了数学和英语竞赛,问至少还有多少人没有报考任何一科?A.0B.41C.53D.79

题目

有120名学生报考语文、数学、英语竞赛,已知现在有35人报考语文竞赛,45人报考数学竞赛,55人报考英语竞赛,其中30人同时报考了语文和数学竞赛,26人同时报考了语文和英语竞赛,38人同时报考了数学和英语竞赛,问至少还有多少人没有报考任何一科?

A.0

B.41

C.53

D.79


相似考题
参考答案和解析
正确答案:C
要使已经报名的人数尽量多,则三科都报的人尽量多,最多只能为26人。
此时利用容斥原理可得,已经报名的人数为35+45+55-30-26-38+26=67人,则至少还有120-67=53人都没有报考任何一科。
更多“有120名学生报考语文、数学、英语竞赛,已知现在有35人报考语文竞赛,45人报考数学竞赛,55人报考英语 ”相关问题
  • 第1题:

    某校参加数学竞赛有120名男生、80名女生,参加语文竞赛有120名女生、80名男生。已知该校总共有260名学生参加了竞赛,其中有75名男生两科竞赛都参加了,那么只参加数学竞赛而没有参加语文竞赛的女生有多少人?

    A.15

    B.25

    C.65

    D.75


    正确答案:A
    [答案] A。[解析]此题为比较复杂的容斥问题,有75名男生两科竞赛都参加了,因此至少参加了一项竞赛的男生有120+80-75=125人,那么至少参加一项竞赛的女生有260-125=135人,那么只参加数学竞赛没有参加语文竞赛的女生有135-120=15人。

  • 第2题:

    某班有50名学生,参加语文竞赛的有28人,参加数学竞赛的有23人,参加英语竞赛的有20人,每人至多参加两科,那么参加两科的最多有多少人?( )

    A. 28
    B. 35
    C. 39
    D. 42

    答案:B
    解析:
    画出图示,因为“每人最多参加两科”,所以没有人参加三科竞赛。由图可知:

  • 第3题:

    想从事英语翻译工作的学生,都报考英语专业,周玲报考了英语专业,她一定想从事英语翻译工作。
    以下哪项为真,最能支持上述观点?
    A.所有报考英语专业的考生都想从事英语翻译工作
    B.有不少英语翻译都有英语专业学位
    C.有些英语翻译是大学英语专业毕业生
    D.想从事英语翻译工作的人,多数报考了英语专业


    答案:A
    解析:
    由“想从事英语翻译工作的学生,都报考英语专业”可得想从事英语翻译工作是报考英语专业的充分条件,则报考英语专业是想从事翻译工作的必要条件,无法由报考英语专业推出一定想从事英语翻译工作,需假设报考英语专业是从事翻译工作的充分条件,即A项。故答案选A。

  • 第4题:

    某校参加数学竞赛的有120名男生,80名女生,参加语文竞赛的有120名女生,80名男生。已知该校总共有260名学生参加了竞赛,其中有75名男生两科都参加了,问只参加数学竞赛而没有参加语文竞赛的女生有多少人?( ) A.65 B.60 C.45 D.15


    正确答案:D
    依题意可知,同时参加两种竞赛的人数是(120+80)×2—260=140(人),同时参加两种竞赛的女生人数为140—75=65(人),则只参加了数学而未参加语文竞赛的女生有80—65=15(人)。故选D。

  • 第5题:

    某校参加数学竞赛的有l20名男生.80名女生,参加语文竞赛的有l20名女生,80名男生。已知该校总共有260名学生参加了竞赛,其中有75.名男生两科都参加了,则只参加数学竞赛而没有参加语文竞赛的女生有( )。


    A. 65人
    B. 60人
    C. 45人
    D. 15人

    答案:D
    解析:
    共有(120+80)×2—260=140人同时参加两科竞赛,其中女生人数是140—75=65人。那么只参加数学竞赛的女生有80—65=l5人。