司法考试前三卷都是选择题?
你好,是的,前三卷为选择题。
【题目描述】
这三个自然数分别是()
【参考答案分析】:
某考试卷中有若干选择题,每答对一题加2分,答错或不答一题扣1分,一考生答对的选择题数量是答错或不答的5倍,选择题共得到45分。问试卷中有多少道选择题?( )
A.50
B.30
C.25
D.20
有关填充材料的技术条件在asme的哪卷?()
下列哪些考试行为属于考生违纪:()
八年级数学第二学期第二十二章四边形专项练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中,内角和等于外角和的是( )ABCD2、如图,DE是ABC的中位线,点F在DE上,且AFB90,若AB5,BC8,则EF的长为( )A2.5B1.5C4D53、已知正多边形的一个外角等于45,则该正多边形的内角和为()A135B360C1080D14404、如图是用若干个全等的等腰梯形拼成的图形,下列说法错误的是( )A梯形的下底是上底的两倍B梯形最大角是C梯形的腰与上底相等D梯形的底角是5、如图,在正方形有中,E是AB上的动点,(不与A、B重合),连结DE,点A关于DE的对称点为F,连结EF并延长交BC于点G,连接DG,过点E作DE交DG的延长线于点H,连接,那么的值为( )A1BCD26、多边形每一个内角都等于150,则从该多边形一个顶点出发,可引出对角线的条数为( )A9条B8条C7条D6条7、如图,点E是正方形ABCD的边DC上一点,把ADE绕点A顺时针旋转90到ABF的位置,若四边形AECF的面积为144AE13则DE的长为()A2BC4D58、如图,在六边形中,若,则( )A180B240C270D3609、四边形的内角和与外角和的数量关系,正确的是()A内角和比外角和大180B外角和比内角和大180C内角和比外角和大360D内角和与外角和相等10、n 边形的每个外角都为 15,则边数 n 为( )A20B22C24D26第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,矩形ABCD绕点A逆时针旋转90得矩形AEFG,连接CF交AD于点P,M是CF的中点,连接AM交EF于点Q,则下列结论:AMCF;CDPAEQ;连接PQ,则PQMQ;若AE2,MQ,点P是CM中点,则PD1其中,正确结论有_(填序号)2、如图,在矩形中,点是线段上的一点(不与点,重合),将沿折叠,使得点落在处,当为等腰三角形时,的长为_3、如图,在平行四边形ABCD中,AB4,BC5,以点C为圆心,适当长为半径画弧,交BC于点P,交CD于点Q,再分别以点P,Q为圆心,大于PQ的长为半径画弧,两弧相交于点N,射线CN交BA的延长线于点E,则AE的长是 _4、如图,在长方形ABCD中,在DC上找一点E,沿直线AE把折叠,使D点恰好落在BC上,设这一点为F,若的面积是54,则的面积=_5、如图,矩形ABCD中,AB=4,BC=6,点E为BC的中点,将ABE沿AE翻折至AFE,连接CF,则CF的长为_三、解答题(5小题,每小题10分,共计50分)1、如图,四边形是平行四边形,为对角线(1)尺规作图:请作出的垂直平分线,分别交,于点,连接,不写作法,保留作图痕迹;(2)请判断四边形的形状,并说明理由2、如图,在平行四边形ABCD中,点E、F分别是BC、AD的中点(1)求证:;(2)当时,在不添加辅助线的情况下,直接写出图中等于的2倍的所有角3、如图,四边形ABCD是菱形,DEAB、DFBC,垂足分别为E、F求证:BEBF4、已知矩形,将矩形绕点A顺时针旋转,得到矩形(1)当点E在上时,求证:;(2)当时,求a值;(3)将矩形绕点A顺时针旋转的过程中,求绕过的面积5、角的平分线的判定定理:角的内部到角的两边的距离相等的点在角的平分线上小强证明该定理的步骤如下:已知:如图1,点P在上,于点D,于点E,且求证:是的平分线证明:通过测量可得,是的平分线(1)关于定理的证明,下面说法正确的是( )A小强用到了从特殊到一般的方法证明该定理B只要测量一百个到角的两边的距离相等的点都在角的平分线上,就能证明该定理C不能只用这个角,还需要用其它角度进行测量验证,该定理的证明才完整D小强的方法可以用作猜想,但不属于严谨的推理证明(2)利用小强的已知和求证,请你证明该定理;(3)如图2,在五边形中,在五边形内有一点F,使得直接写出的度数-参考答案-一、单选题1、B【分析】设n边形的内角和等于外角和,计算(n-2)180=360即可得出答案;【详解】解:设n边形的内角和等于外角和(n-2)180=360解得:n=4故答案选:B【点睛】本题考查了多边形内角和与外角和,熟练掌握多边形内角和计算公式是解题的关键2、B【分析】根据直角三角形斜边上的中线等于斜边的一半可得,再利用三角形中位线定理可得DE4,进而可得答案【详解】解:D为AB中点,AFB90,AB5,DE是ABC的中位线,BC8,DE4,EF42.51.5,故选:B【点睛】此题主要考查了直角三角形的性质和三角形中位线定理,三角形的中位线平行于第三边,并且等于第三边的一半3、C【分析】先利用正多边形的每一个外角为 求解正多边形的边数,再利用正多边形的内角和公式可得答案.【详解】解: 正多边形的一个外角等于45, 这个正多边形的边数为: 这个多边形的内角和为: 故选C【点睛】本题考查的是正多边形内角和与外角和的综合,熟练的利用正多边形的外角的度数求解正多边形的边数是解本题的关键.4、D【分析】如图(见解析),先根据平角的定义可得,再根据可求出,由此可判断选项;先根据等边三角形的判定与性质可得,再根据平行四边形的判定可得四边形是平行四边形,根据平行四边形的性质可得,然后根据菱形的判定可得四边形是菱形,根据菱形的性质可得,最后根据线段的和差、等量代换可得,由此可判断选项【详解】解:如图,梯形是等腰梯形, ,则梯形最大角是,选项B正确;没有指明哪个角是底角,梯形的底角是或,选项D错误;如图,连接,是等边三角形,点共线,四边形是平行四边形,四边形是菱形,选项A、C正确;故选:D【点睛】本题考查了等腰梯形、菱形的判定与性质、等边三角形的判定与性质等知识点,熟练掌握各判定与性质是解题关键5、B【分析】作辅助线,构建全等三角形,证明DAEENH,得AE=HN,AD=EN,再说明BNH是等腰直角三角形,可得结论【详解】解:如图,在线段AD上截取AM,使AM=AE, AD=AB,DM=BE,点A关于直线DE的、对称点为F,ADEFDE,DA=DF=DC,DFE=A=90,1=2,DFG=90,在RtDFG和RtDCG中,RtDFGRtDCG(HL),3=4,ADC=90,1+2+3+4=90,22+23=90,2+3=45,即EDG=45,EHDE,DEH=90,DEH是等腰直角三角形,AED+BEH=AED+1=90,DE=EH,1=BEH,在DME和EBH中,DMEEBH(SAS),EM=BH,RtAEM中,A=90,AM=AE, ,即=故选:B【点睛】本题考查了正方形的性质,全等三角形的判定定理和性质定理,等知识,解决本题的关键是作出辅助线,利用正方形的性质得到相等的边和相等的角,证明三角形全、等6、A【分析】多边形从一个顶点出发的对角线共有(n-3)条多边形的每一个内角都等于150,多边形的内角与外角互为邻补角,则每个外角是30度,而任何多边形的外角是360,则求得多边形的边数;再根据不相邻的两个顶点之间的连线就是对角线,则此多边形从一个顶点出发的对角线共有(n-3)条,即可求得对角线的条数【详解】解:多边形的每一个内角都等于150,每个外角是30,多边形边数是36030=12,则此多边形从一个顶点出发的对角线共有12-3=9条故选A【点睛】本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容7、D【分析】由旋转性质得ABFADE,再根据全等三角形的性质得到S
“请考生注意,未将试题答案填涂在答题卡上的,请抓紧时间填涂”监考规范用语提示时间为()
监考员处理缺考考生试卷、答题卡及空白试卷、答题卡操作为()。
关于考生考试规范作答,说法正确的是()
考试结束后,主考和监考应完成哪些工作,才能允许考生离场()。
考试结束后,主考和监考应完成哪些工作,才能允许考生离场()。