考题
如图所示,ΔABC是直角三角形,四边形和四边形都是正方形,已知4cm,问正方形HFGF的面积是多少?( )
答案:C解析:
考题
下列关于特殊四边形的表述中,正确的有()A、一组对边平行且相等的四边形是平行四边形B、四条边都相等的四边形是矩形C、对角线互相垂直的四边形是菱形D、正方形既是矩形又是菱形正确答案:A,D
考题
多选题下列关于特殊四边形的表述中,正确的有()A一组对边平行且相等的四边形是平行四边形B四条边都相等的四边形是矩形C对角线互相垂直的四边形是菱形D正方形既是矩形又是菱形正确答案:D,B解析:暂无解析
考题
如图所示,ΔABC是直角三角形,四边形和四边形都是正方形,已知4cm,问正方形HFGF的面积是多少?( )
答案:C解析:
考题
如图,已知一个四边形中边AD长为3cm,边BC长7cm;∠DAB=135°,∠ABC=∠ADC=90°那么这个四边形的面积是( )cm2。答案:D解析:第一步,本题考查几何问题,用割补平移法解题。
第二步,作BA和CD的延长线交于E,如图所示,得到三角形EBC和ADE。容易知道所求四边形ABCD面积等于△EBC面积减去△ADE面积。由题意∠DAB=135°,∠ABC=∠ADC=90°,可以求得∠DCB=360°-135°-90°×2=45°,且∠BEC=∠EAD=45°,所以△EBC和△ADE都是等腰直角三角形。
第三步,因为AD长3cm,BC长7cm,则BE=BC=7cm,DE=AD=3cm,所以S□ABCD=S△EBC-S△ADE=因此,选择D选项。
考题
初中数学《菱形的判定》一、考题回顾二、考题解析
【教学过程】
(一)引入新课
提问:菱形和矩形分别比平行四边形多了哪些性质?怎么判断一个四边形是矩形?
问题:如何判断一个平行四边形或四边形是菱形?
引出课题。
(二)探索新知
问题:对比平行四边形和矩形的判定方法,说说菱形的性质定理的逆定理是否成立?
思考:对角线互相垂直的平行四边形是菱形吗?1.请说一说平行四边形、矩形、菱形、正方形的概念。
2.说一下菱形这节课在整个初中数学的地位?答案:解析:1.
平行四边形:两组对边分别平行的四边形叫做平行四边形;
菱形:一组邻边相等的平行四边形叫做菱形;
矩形:一个内角是直角的平行四边形叫做矩形;
正方形:一组邻边相等的矩形叫做正方形。
2.
“菱形”是继“平行四边形”之后的一个学习内容,它是在学生掌握了平行四边形的性质与判定,具备了初步的观察、操作等活动经验的基础上讲授的。这一节课既是前面所学知识的继续,又是后面学习正方形等知识的基础,起着承前启后的作用。四边形既是平面几何中的基本图形,也是平面几何研究的主要对象,因此学好四边形的内容,尤其是特殊的四边形,对学生来说,无论是进一步学习还是实际应用都是很重要的。同时通过探索和证明菱形的特殊性质,可以让学生体会证明的必要性,并进一步丰富对图形的认识和感受。
考题
在学习了平行四边形、三角形的中位线定理后,某老师设计了一个教学目标。① 进一步理解三角形中位线定理和平行四边形判定定理② 运用三角形中位线定理、平行四边形判定定理解决问题③ 提高发现解决能力他的教学过程设计包含以下一道例题:如图1,在四边形ABCD中,EFGH分别是AB、BC、CD、DA中点,问题一、求证四边形EFGH是平行四边形。问题二、如何改变问题条件,从而分别得到菱形、矩形、正方形。针对上述材料,完成以下任务(1)结合目标分析该例题设计意图(10分)(2)类比上述例题问题二设计一个新问题,使之符合教学目标③要求(8分)(3)设计该例题简要教学流程(8分)并给出解题的小结提纲(4分)
答案:解析:本题主要考查教学设计相关内容。
考题
如图,已知一个四边形中边AD长为3cm,边BC长7cm;∠DAB=135°,∠ABC=∠ADC=90°那么这个四边形的面积是( )。A.49/4
B.21
C.
D.20答案:D解析:
考题
如图所示,△ABC是直角形,四边形IBFD和四边形HFGE都是正方形,已知AI=1cm,IB=4cm,问正方形HFGE的面积是多少( )答案:C解析:C。设正方形HFGE的边长为X,由三角形EHD相似于三角形DIA可知,EH/DH=DI/DA,即X/(X-4)=4/1,解得X=16/5,那么正方形面积为X的平方等于10.24。
考题
在Illustrator中,使用矩形选框工具并按住Shift键,可以画出一个()选区A、矩形B、正方形C、四边形D、三角形正确答案:B