更多“设随机变量与的联合分布律为(1)求X与Y的边缘分布列(2)X与Y是否独立?”相关问题
  • 第1题:

    设随机变量X与Y相互独立,下表列出二维随机变量(X,Y)的联合分布律及关于X和Y的边缘分布律的部分数值,试将其余的数值填入表中空白处.


    答案:
    解析:

  • 第2题:

    设随机变量(X,Y)的联合密度为f(x,y)=求:
      (1)X,Y的边缘密度;(2)P


    答案:
    解析:

  • 第3题:

    设随机变量X与Y独立,其中X的概率分布为而Y的概率密度为f(y),求随机变量U=X+Y的概率密度g(u).


    答案:
    解析:
    【简解】本题是2003年数三的考题,考查一个离散型和一个连续型两个随机变量的函数的分布,随机变量的独立性等,
    先求分布函数

    由此得g(u)=0.3f(u-1)+0.7f(u-2).

  • 第4题:

    设随机变量X的分布律为X~,则y=X……2+2的分布律为_______.


    答案:
    解析:
    Y的可能取值为2,3,6,  
    则Y的分布律为.

  • 第5题:

    设随机变量X,Y独立同分布,且P(X=i)=,i=1,2,3.
      设随机变量U=max{X,Y},V=min{X,Y}.
      (1)求二维随机变量(U,V)的联合分布;(2)求Z=UV的分布;
      (3)判断U,V是否相互独立?(4)求P(U=V).


    答案:
    解析:

  • 第6题:

    设二维随机变量(X,Y)的联合密度为f(x,y)=
      (1)求c;(2)求X,Y的边缘密度,问X,y是否独立?
      (3)求Z=max(X,Y)的密度.


    答案:
    解析:

  • 第7题:

    设随机变量X的概率分布为P{X=1}=P{X=2}=,在给定X=i的条件下,随机变量Y服从均匀分布U(0,i)(i=1,2).
      (Ⅰ)求Y的分布函数FY(y);
      (Ⅱ)求EY.


    答案:
    解析:

  • 第8题:

    设随机变量X与Y相互独立,X服从参数为1的指数分布,Y的概率分布为P{Y=-1}=p,P{Y=1)=1-p,(0  (Ⅰ)求Z的概率密度;
      (Ⅱ)p为何值时,X与Z不相关;
      (Ⅲ)X与Z是否相互独立?


    答案:
    解析:

  • 第9题:

    设二维随机变量(X,Y)在区域上服从均匀分布,令
      (Ⅰ)写出(X,Y)的概率密度;
      (Ⅱ)请问U与X是否相互独立?并说明理由;
      (Ⅲ)求Z=U+X的分布函数F(z).


    答案:
    解析:

  • 第10题:

    设随机变量X,Y相互独立,且X~N,Y~N,则与Z=Y-X同分布的随机变量是().

    A.X-Y
    B.X+Y
    C.X-2Y
    D.Y-2X

    答案:B
    解析:
    Z=Y-X~N(1,1),因为X-Y~N(-1,1),X+Y~N(1,1).X-2Y~N,Y-2X~N,所以选(B).

  • 第11题:

    如果随机变量X和Y服从联合正态分布,且X与Y的协方差为0,则X与Y相互独立。


    正确答案:正确

  • 第12题:

    问答题
       随机变量(X,Y)在矩形区域D={(x,y)|a   求:(1)联合概率密度f(x,y).       (2)边缘概率密度f X(i),f Y(y).       (3)X与Y是否独立?

    正确答案:
    解析:

  • 第13题:

    随机变量X与Y相互独立,X服从参数为1的指数分布,Y的概率分布为令Z=XY。X与Z是否相互独立


    答案:
    解析:
    因为

  • 第14题:

    设X,y的概率分布为X~,Y~,且P(XY=0)=1.
      (1)求(X,Y)的联合分布;(2)X,Y是否独立?


    答案:
    解析:

  • 第15题:

    设随机变量X,Y相互独立,且X~N(0,4),Y的分布律为Y~.则P(X-1-2Y≤4)=_______.


    答案:1、0.46587
    解析:
    p(X+2Y≤4)=P(Y=1)P(X≤4-2Y|Y=1)+P(Y=2)P(X≤4-2Y|Y=2)+P(Y=3)P(X≤4-2Y|Y=3)

  • 第16题:

    设随机变量(X,Y)在区域D={(z,y)|0≤x≤2,0≤y≤1}上服从均匀分布,令
      U=,V=.
      (1)求(U,V)的联合分布;(2)求.


    答案:
    解析:

  • 第17题:

    设随机变量X和Y相互独立,下表列出了二维随机变量(X,Y)的联合分布律及关于X和关于Y的边缘分布律中的部分数值.试将其余数值填入表中的空白处.
      


    答案:
    解析:
    当离散型随机变量(X,Y)中X与Y相互独立时,有进一步就有,也就是说(X,Y)的分布律中,当X,Y独立就对应各行成比例.有了这一点再加上边缘分布性质,就能很快解得

  • 第18题:

    随机变量X与Y相互独立,X服从参数为1的指数分布,Y的概率分布为。求Z的概率密度


    答案:
    解析:

  • 第19题:

    设随机变量X与Y的概率分布分别为

      且P{X^2=Y^2}=1.
      (Ⅰ)求二维随机变量(X,Y)的概率分布;
      (Ⅱ)求Z=XY的概率分布;
      (Ⅲ)求X与Y的相关系数ρXY.


    答案:
    解析:

  • 第20题:

    设随机变量X与Y相互独立,X的概率分布为P{X=1}=P{X=-1}=,Y服从参数为λ的泊松分布.令Z=XY.
      (Ⅰ)求Cov(X,Z);
      (Ⅱ)求Z的概率分布.


    答案:
    解析:

  • 第21题:

    设随机变量X,Y相互独立,且X的概率分布为P{X=0)=P{X=2)=,Y的概率密度为
      (Ⅰ)求P{Y≤EY};
      (Ⅱ)求Z=X+Y的概率密度.


    答案:
    解析:

  • 第22题:

    设随机变量X与Y相互独立且都服从区间[0,1]上的均匀分布,则下列随机变量中服从均匀分布的有()。

    • A、X2
    • B、X+Y
    • C、(X,Y)
    • D、X-Y

    正确答案:C

  • 第23题:

    问答题
    设随机变景X与Y相互独立,且X服从[0,1]上的均匀分布,y服从λ=1的指数分布,  求:(1)X与Y的联合分布函数.  (2)X与y的联合概率密度函数.  (3)P{X≥Y}.

    正确答案:
    解析: