单选题设某一厂商的生产函数为:Q=-0.1L3+6L2+12L(Q为每周产量,L为每周雇佣的劳动量),若产品、要素市场均完全竞争,产品价格为30元,周工资率为360元,厂商追求最大利润,则每周雇佣的劳动量是(  )。A 30B 40C 50D 20E 15

题目
单选题
设某一厂商的生产函数为:Q=-0.1L3+6L2+12L(Q为每周产量,L为每周雇佣的劳动量),若产品、要素市场均完全竞争,产品价格为30元,周工资率为360元,厂商追求最大利润,则每周雇佣的劳动量是(  )。
A

30

B

40

C

50

D

20

E

15


相似考题
参考答案和解析
正确答案: D
解析:
利润π=PQ-C=30×(-0.1L3+6L2+12L)-360L=-3L3+180L2。厂商利润最大化时,利润函数应当满足以下条件:dπ/dL=-9L2+360L=0,解得:L=40。即每周雇佣的劳动量为40时,厂商可以获得最大利润。
更多“单选题设某一厂商的生产函数为:Q=-0.1L3+6L2+12L(Q为每周产量,L为每周雇佣的劳动量),若产品、要素市场均完全竞争,产品价格为30元,周工资率为360元,厂商追求最大利润,则每周雇佣的劳动量是(  )。A 30B 40C 50D 20E 15”相关问题
  • 第1题:

    垄断厂商生产某一产品,产品的成本函数为C(q)=q2,市场反需求函数为p=120-q。试求:(1)垄断厂商利润最大化的产量和价格,并画图说明。(2)政府对垄断厂商征收100元的税收后,垄断厂商的产量和价格。(3)政府对垄断厂商单位产品征收从量税2元,垄断厂商的产量和价格。


    答案:
    解析:
    (1)垄断厂商的边际成本函数为MC= 2q,边际收益函数为MR =120 - 2q,根据垄断 厂商利润最大化原则MR =MC,可以解得垄断厂商利润最大化的产量和价格分别为q*一30、 p* =90。如图1 2所示,厂商在MR曲线和MC曲线的交点处确定利润最大化的产量q* =30, 再根据q’对应的市场需求曲线D上的点确定产品的价格p* =90。

    (2)当政府对垄断厂商征收100元税收后,垄断厂商的实际成本函数变为: C(q) =q2+100 但垄断厂商的边际成本函数仍为MC=2q,因而利润最大化的条件不变,因此垄断厂商利润最大 化的产量和价格仍然为q+ =30、p* =90。 (3)当政府对垄断厂商单位产品征收从量税2元后,垄断厂商的实际成本函数变为C(q)一qz+ 2q,边际成本函数则为MC=2q+2,边际收益函数仍为MR =120-2q,根据垄断厂商利润最大 化原则MR =MC,可以解得垄断厂商利润最大化的产量和价格分别为g’=29.5,p* =90.5。

  • 第2题:

    已知某完全竞争的成本不变行业中的单个厂商的长期总成本函数为LTC= Q3 - 12Q2+40Q。试求: (1)当市场产品价格为P=100时,厂商实现MR= LMC时的产量、平均成本和利润。 (2)该行业长期均衡时的价格和单个厂商的产量。 (3)当市场的需求函数为Q=660 -15P时,行业长期均衡时的厂商数量。


    答案:
    解析:

    故Q=6是长期平均成本最小化的解。 以Q=6代入LAC( Q),得平均成本的最小值为LAC =62 -12 x6+40 =4。 由于完全竞争行业长期均衡时的价格等于厂商的最小的长期平均成本,所以,该行业长期均衡时的价格P=4,单个厂商的产量Q=6。 (3)由于完全竞争的成本不变行业的长期供给曲线是一条水平线,而且相应的市场长期均衡价格是固定的,它等于单个厂商的最低的长期平均成本,所以,本题的市场长期均衡价格固定为P=4。以P=4代入市场需求函数Q=660 -15P,便可以得到市场的长期均衡数量为Q=660 -15 x4= 600。 现已求得在市场实现长期均衡时,市场的均衡数量Q =600,单个厂商的均衡产量Q=6。于是,行业长期均衡时的厂商数量= 600÷6=100。

  • 第3题:

    已知完全竞争市场上单个厂商的长期成本函数为LTC =Q3-20Q2+200Q,市场的产品价格为P= 600 . (1)该厂商实现利润最大化时的产量、平均成本和利润各是多少? (2)该行业是否处于长期均衡?为什么? (3)该行业处于长期均衡时每个厂商的产量、平均成本和利润各是多少? (4)判断(1)中的厂商是处于规模经济阶段,还是处于规模不经济阶段?


    答案:
    解析:


    所以,当Q =10时,LAC曲线达到最小值。 以Q =10代入LAC函数,可得最小的长期平均成本=102 - 20 x10 +200 =100。 综合(1)和(2)的计算结果,我们可以判断(1)中的行业未实现长期均衡。因为由(2)可知,当该行业实现长期均衡时,市场的均衡价格应等于单个厂商的LAC曲线最低点的高度,即应该有长期均衡价格P =100,而且单个厂商的长期均衡产量应该是Q=10,还应该有每个厂商的利润π=O。而事实上由(1)可知,该厂商实现利润最大化时的价格P=600,产量Q=20,π=8000。显然,该厂商实现利润最大化时的价格、产量和利润都大于行业长期均衡时对单个厂商的要求,即价格600> 100,产量20 >10,利润8000 >0。因此,(1)中的行业未处于长期均衡状态。 (3)由(2)已知,当该行业处于长期均衡时,单个厂商的产量Q=10,价格等于最低的长期平均成本,即有P= LACmin=100,利润L=0。 (4)由以上分析可以判断,(1)中的厂商处于规模不经济阶段。其理由在于:(1)中单个厂商的产量Q =20,价格P=600,它们都分别大于行业长期均衡时单个厂商在LAC曲线最低点生产的产量Q =10和面对的价格P=100。换言之,(1)中的单个厂商利润最大化的产量和价格组合发生在LAC曲线最低点的右边,即LAC曲线处于上升段,所以,单个厂商处于规模不经济阶段。

  • 第4题:

    完全竞争行中某厂商的成本函数为TC=Q3-6Q2+30Q+40试求: (1)假设产品价格为66元,利润最大化时的产量及利润总额。 (2)竞争市场供求发生变化,由此决定的新价格为30元,在新价格下,厂商是否会发生亏损?如果会,最小的亏损额为多少? (3)该厂商在什么情况下会停止生产? (4)厂商的短期供给函数。


    答案:
    解析:

  • 第5题:

    一个完全竞争行业中的一个典型厂商,其长期总成本函数为LTC =q3- 60q2+1500q,其中成本的单位为元,q为月产量. (1)推导出其长期平均成本和长期边际成本函数。 (2)若产品市场价格为975元,为实现利润最大化,厂商的产量将是多少? (3)厂商在(2)中的均衡是否与行业均衡并存? (4)若市场的需求曲线为P=9600 -Q,在长期均衡中,该行业将有多少厂商?


    答案:
    解析:

  • 第6题:

    假定某完全竞争厂商的短期总成本函数为STC=0.04Q3-0.4Q2+8Q +9,产品的价格P=12.求该厂商实现利润最大化时的产量、利润量和生产者剩余。


    答案:
    解析:

  • 第7题:

    假定某完全竞争行业内单个厂商的短期总成本函数为STC=Q3—8Q2+22Q+90,产品的价格为P=34, (1)求单个厂商实现利润最大化时的产量和利润量: (2)如果市场供求变化使得产品价格下降为P=22,那么,厂商的盈亏状况将如何?如果亏损,亏损额是多少?(保留整数部分) (3)在(2)的情况下,厂商是否还会继续生产?为什么?


    答案:
    解析:

  • 第8题:

    某产品市场的需求曲线为Q=1000-10P,成本函数为C=40Q,下列说法正确的有( )。
    ①若该产品由一个垄断厂商生产,则利润最大化是产量是300
    ②在垄断条件下,社会福利的净损失是5000
    ③若该产品由一个垄断厂商生产,则厂商最大利润为9000
    ④若要实现帕累托最优,相应的产量是600,价格是40

    A.①②
    B.②③④
    C.③④
    D.①③④

    答案:D
    解析:
    ①③两项,垄断厂商进行生产决策的条件为MR=MC,由于TR=PQ=100Q-01Q2,所以MR=100-02Q,MC=40,进而解得Q=300,P=70,利润最大为9000;④项,价格等于边际成本时实现帕累托最优,P=40,Q=600;②项,垄断条件下消费者剩余为:300×30/2=4500,帕累托最优下消费者剩余为:600×60/2=18000,消费者剩余减少18000-4500=13500,垄断利润增加9000,所以社会福利的净损失为:13500-9000=4500。

  • 第9题:

    已知某完全竞争行业中的单个厂商的短期成本函数为STC=0.1Q3—2Q2+15Q+10。试求:(1)当市场上产品的价格为P=55时,厂商的短期均衡产量和利润;(2)当市场价格下降为多少时,厂商必须停产;(3)厂商的短期供给函数。


    正确答案: (1)P=MR=55
    短期均衡时SMC=0.3Q2-4Q+15=MR=55
    0.3Q2-4Q-40=0
    ∴Q=20或Q=-20/3(舍去)
    利润=PQ-STC=55×20-(0.1×8000-2×400+15×20+10)=790
    (2)厂商停产时,P=AVC最低点。
    AVC=SVC/Q=(0.1Q3—2Q2+15Q)/Q=0.1Q2-2Q+15
    AVC最低点时,AVC′=0.2Q-2=0
    ∴Q=10
    此时AVC=P=0.1×100-2×10+15=5
    (3)短期供给函数为P=MC=0.3Q2-4Q+15(取P>5一段)

  • 第10题:

    计算题:设某厂商只把劳动作为可变要素,其生产函数为Q=-0.01L3+L2+36L,Q为厂商每天产量,L为工人的日劳动小时数。所有市场均为完全竞争的,单位产品价格为0.10美元,小时工资率为4.8美元,试求当厂商利润极大时: (1)厂商每天将投入多少劳动小时? (2)如果厂商每天支付的固定成本为50美元,厂商每天生产的纯利润为多少?


    正确答案: (1)因为Q=-0.01L3+L2+36L所以MPP=-0.03L2+2L+36
    又因为VMP=MPP•P利润最大时W=VMP
    所以0.10(-0.03L2+2L+36)=4.8
    得L=60
    (2)利润=TR-TC=P•Q-(FC+VC)
    =0.10(-0.01•603+602+36•60)-(50+4.8•60)
    =22

  • 第11题:

    问答题
    计算题: 已知某完全竞争行业中的单个厂商的短期成本函数为STC=0.1Q3-2Q2+15Q+10。试求: (1)当市场上产品的价格为P=55时,厂商的短期均衡产量和利润; (2)当市场上价格下降为多少时,厂商必须停产; (3)厂商的短期供给函数

    正确答案: (1)根据MC=MR=P
    MC=dSTC/dQ=0.3Q2-4Q+15=55=P
    解得Q=20
    利润=TR-STC=55*20-(0.1*203-2*202+15*20+10)=790
    (2)停业点为AVC的最低点
    AVC=TVC/Q=0.1Q2-2Q+15
    当Q=10时AVC最小且AVC=5所以P=5时厂商必须停产
    (3)短期供给函数即SMC函数且大于最低AVC对应产量以上的区间
    SMC=dSTC/dQ=0.3Q2-4Q+15
    所以短期供函数为0.3Q2-4Q+15(Q≥10)
    解析: 暂无解析

  • 第12题:

    问答题
    已知某完全竞争行业中的单个厂商的短期成本函数为:STC=0.1Q3-2Q2+15Q+10(1)当市场上产品价格为 55时厂商的短期均衡产量和利润;(2)当市场价格下降为多少时厂商必须停产?(3)求厂商的短期供给函数。

    正确答案:
    由短期成本函数可得厂商的短期边际成本函数为:SMC=0.3Q2-4Q+15。
    完全竞争厂商实现短期均衡时,有SMC=P,即0.3Q2-4Q+15=55,解得:Q=20。
    此时,利润为π=PQ-STC=55×20-(0.1×203-2×202+15×20+10)=790。
    即均衡产量为20,利润为790。
    解析: 暂无解析

  • 第13题:

    假定某垄断厂商生产一种产品,其总成本函数为TC=0.SQ2 +10Q +5,市场的反需求函数为P=70 -2Q: (1)求该厂商实现利润最大化时的产量、产品价格和利润量。 (2)如果要求该垄断厂商遵从完全竞争原则,那么,该厂商实现利润最大化时的产量、产品价格和利润量又是多少? (3)试比较(1)和(2)的结果,你可以得出什么结论?


    答案:
    解析:
    (1)厂商边际成本函数为MC=Q+10, 边际收益函数为MR =70 -4Q。 根据利润最大化原则MR =MC, 可知Q =12,P=46,利润π=PQ - TC= 355。 (2)根据完全竞争原则可知P=MC, 可得Q =20,P=30, 此时利润π= PQ - TC= 195。 (3)比较(1)和(2)可知,垄断条件下的利润更大,价格更高,但产量却比较低。

  • 第14题:

    已知劳动是唯一的可变要素,生产函数为Q =A +10L - 5L2,产品市场是完全竞争的,劳动价格为W.试说明: (1)厂商为劳动的需求函数。 (2)厂商对劳动的需求量与工资反方向变化。 (3)厂商对劳动的需求量与产品价格同方向变化:


    答案:
    解析:

  • 第15题:

    假设某完全竞争行业有200个相同的企业,企业的短期成本函数为TC =0. 2Q2+Q+15,市场需求函数为Qp= 2475 - 95P,厂商的长期总成本函数为LTC=0.1Q3-1. 2Q2+11.1Q,求: (1)市场短期均衡价格、产量及厂商利润。 (2)市场长期均衡价格与产量。 (3)说明是否会有厂商退出经营。


    答案:
    解析:
    (1)先求单个企业的供给函数:

    故A VC的最小值为1。 而MC的最小值也为1,故只有价格大于等于1,厂商才会供给商品。 此时单个企业的供给函数为P= MC =0.4Q +l,即Q=2.SP -2.5。 市场的供给函数为Qs=200Q =500P -500(P≥1),由QD=QS可得P=5。 市场均衡产量为2000单位,每个厂商产量为10单位。 单个厂商利润为5 x10 - (0.2 x102 +10+15) =5。

    将Q=6代入LAC,得IAC =7.5。 由长期均衡条件可得P=7. 5. (3)将P=7.5代入需求函数可得市场需求量为1762.5,而200个厂商的供给量为1200,再加上厂商短期利润为正,长期利润为O,所以没有厂商退出经营。

  • 第16题:

    假定一个厂商处于完全竞争市场环境中,当其投入要素的价格为6元,该投入要素的边际产量为1/3时厂商获得最大的利润。则厂商生产的产品价格是( )。

    A.2元
    B.18元
    C.1.8元
    D.9元

    答案:B
    解析:

  • 第17题:

    某完全竞争厂商的短期边际成本函数为SMC=0.6Q-10,总收益函数为TR =38Q.而且已知产量Q=20时的总成本STC=260. 求:该厂商利润最大化时的产量和利润。


    答案:
    解析:
    由SMC=0.6Q -10可得STC=0.3Q2一10Q+ FC,又因为Q=20时的总成本STC= 260,代入可得FC= 340,从而STC =0.3Q2 -10Q +340。 由总收益函数TR= 38Q可得MR =38。 由利润最大化的条件MR= SMC可得Q=80,利润尺=1580 .

  • 第18题:

    设一厂商使用的可变要素为劳动L,其生产函数为Q= -O. O1L3+L2+38L 其中,Q为每日产量,L为每日投入的劳动小时数,所有市场(劳动市场及产品市场)都是完全竞争的,单位产品价格为0. 10美元,小时工资为5美元,厂商要求利润最大化。问厂商每天雇用多少小时的劳动?


    答案:
    解析:
    已知工资W=5,根据生产函数及产品价格P=0.10,可求得劳动的边际产品价值如下:

  • 第19题:

    某产品市场的需求曲线为Q=1000-10P,成本函数为C=40Q,下列说法正确的有()。
    Ⅰ.若该产品由一个垄断厂商生产,则利润最大化时产量是300
    Ⅱ.若该产品由一个垄断厂商生产,则厂商最大利润为9000
    Ⅲ.若要实现帕累托最优,相应的产量是600,价格是40
    Ⅳ.在垄断条件下,社会福利的净损失是5000

    A.Ⅰ、Ⅱ
    B.Ⅰ、Ⅲ、Ⅳ
    C.Ⅲ、Ⅳ
    D.Ⅰ、Ⅱ、Ⅲ

    答案:D
    解析:
    垄断厂商进行生产决策的条件为MR=MC,由于TR=PQ=100Q-0.1Q2,所以MR=dTR/dQ=100-0.2Q,MC=dC/dQ=40,进而解得Q=300,P=70,最大利润为:300×70-40×300=9000;价格等于边际成本时实现帕累托最优,P=40,Q=600;垄断条件下消费者剩余为:300 x 30/2—4500,帕累托最优下消费者剩余为:600×60/2=18000,消费者剩余减少18000-4500=13500,垄断利润增加9000,所以社会福利的净损失为:13500-9000=4500。

  • 第20题:

    某产品市场的需求曲线为Q=1000-10P,成本函数为C=40Q,则下列结论正确的有( )。
    ?Ⅰ.若该产品由一个垄断厂商生产,则利润最大化时产量是300,价格是70
    ?Ⅱ.若该产品由一个垄断厂商生产,则厂商最大利润为9000
    ?Ⅲ.若要实现帕累托最优,相应的产量是600,价格是40
    ?Ⅳ.在垄断条件下,社会福利的净损失是5000

    A.Ⅰ、Ⅱ、Ⅲ
    B.Ⅰ、Ⅲ、Ⅳ
    C.Ⅰ、Ⅱ
    D.Ⅲ、Ⅳ

    答案:A
    解析:
    该产品为垄断厂商生产时,市场需求函数即该厂商的需求函数。由Q=1000-10P得P=100-0.1Q得边际收益函数MR=100-0.2Q由成本函数C=40Q得MC=40=AC利润极大时,MC=MR,即40=100-0.2Q得Q=300,P=70,π=70×300-40×300=9000
    即产量、价格和利润分别为300,70和9000
    要达到帕累托最优,则价格必须等于边际成本,即P=100-0.1Q=40=MC,得Q=600,P=40
    当Q=300,P=70时,消费者剩余为=300(85-70)=4500当Q=600,P=40时,消费者剩余为CS=600(70-40)=18000
    社会福利的纯损失为:18000-4500-9000=4500在此,18000-4500=13500是垄断所造成的消费者剩余的减少量。
    其中9000转化为垄断者利润,因此,社会福利的纯损失为4500。

  • 第21题:

    已知某完全竞争行业中的单个厂商的短期成本函数为STC=0.1Q3-3Q2+10Q+200,SMC=0.3Q2-6Q+10。当市场上产品价格P=100时,求厂商的短期均衡产量和利润。


    正确答案: P=SMC=MR
    0.3Q2-6Q+10
    短期均衡产量Q=30
    STC=500
    利润100*30-500=2500

  • 第22题:

    问答题
    已知某完全竞争行业中的单个厂商的短期成本函数为STC=0.1Q3—2Q2+15Q+10。试求:(1)当市场上产品的价格为P=55时,厂商的短期均衡产量和利润;(2)当市场价格下降为多少时,厂商必须停产;(3)厂商的短期供给函数。

    正确答案: (1)P=MR=55
    短期均衡时SMC=0.3Q2-4Q+15=MR=55
    0.3Q2-4Q-40=0
    ∴Q=20或Q=-20/3(舍去)
    利润=PQ-STC=55×20-(0.1×8000-2×400+15×20+10)=790
    (2)厂商停产时,P=AVC最低点。
    AVC=SVC/Q=(0.1Q3—2Q2+15Q)/Q=0.1Q2-2Q+15
    AVC最低点时,AVC′=0.2Q-2=0
    ∴Q=10
    此时AVC=P=0.1×100-2×10+15=5
    (3)短期供给函数为P=MC=0.3Q2-4Q+15(取P>5一段)
    解析: 暂无解析

  • 第23题:

    单选题
    某产品市场的需求曲线为Q=1000-10P,成本函数为C=40Q,下列说法正确的有(  )。Ⅰ.若该产品由一个垄断厂商生产,则利润最大化时产量是300Ⅱ.若该产品由一个垄断厂商生产,则厂商最大利润为9000Ⅲ.若要实现帕累托最优,相应的产量是600,价格是40Ⅳ.在垄断条件下,社会福利的净损失是5000
    A

    Ⅰ、Ⅱ

    B

    Ⅰ、Ⅲ、Ⅳ

    C

    Ⅲ、Ⅳ

    D

    Ⅰ、Ⅱ、Ⅲ


    正确答案: B
    解析:
    Ⅰ、Ⅱ两项,垄断厂商进行生产决策的条件为MR=MC,由于TR=PQ=100Q-0.1Q2,所以MR=dTR/dQ=100-0.2Q,MC=dC/dQ=40,进而解得Q=300,P=70,利润最大为:300×70-40×300=9000;Ⅲ项,价格等于边际成本时实现帕累托最优,P=40,Q=600;Ⅳ项,垄断条件下消费者剩余为:300×30/2=4500,帕累托最优下消费者剩余为:600×60/2=18000,消费者剩余减少18000-4500=13500,垄断利润增加9000,所以社会福利的净损失为:13500-9000=4500。