更多“填空题设函数f(u)可微,且f′(0)=1/2,则z=f(4x2-y2)在点(1,2)处的全微分dz|(1,2)=____。”相关问题
  • 第1题:

    设函数z=z(x,y)由方程确定,其中F为可微函数,且F'2≠0,则=

    A.Ax
    B.z
    C.-x
    D.-z

    答案:B
    解析:

  • 第2题:

    若函数z=f(x,y)在点P0(x0,y0)处可微,则下面结论中错误的是(  )。



    答案:D
    解析:
    二元函数z=f(x,y)在点(x0,y0)处可微,可得到如下结论:①函数在点(x0,y0)处的偏导数一定存在,C项正确;②函数在点(x0,y0)处一定连续,AB两项正确;可微,可推出一阶偏导存在,但一阶偏导存在不一定一阶偏导在P0点连续,也有可能是可去或跳跃间断点,故D项错误。

  • 第3题:

    设函数z=x2ey。则全微分dz= .


    答案:
    解析:
    【答案】dz=2xeydx+x2eydy【考情点拨】本题考查了二元函数的全微分的知识点.
    【应试指导】

  • 第4题:

    设F(X)为区间(0,3)上的单峰函数,且F(1)=2、F(2)=1.5,则可将搜索区间(0,3)缩小为()

    • A、(0,2)
    • B、(1,2)
    • C、(2,3)
    • D、(1,3)

    正确答案:D

  • 第5题:

    设函数f(x)=丨x丨,则函数在点x=0处()

    • A、连续且可导
    • B、连续且可微
    • C、连续不可导
    • D、不可连续不可微

    正确答案:C

  • 第6题:

    填空题
    函数f(u,v)由关系式f[xg(y),y]=x+g(y)确定,其中函数g(y)可微,且g(y)≠0,则∂2f/∂u∂v=____。

    正确答案: -g′(v)/g2(v)
    解析:
    要求f(u,v)对自变量的偏导,则需将关系式f[xg(y),y]=x+g(y)转化为只含有u、v的关系式,故令u=xg(y),v=y,则x=u/g(v),y=v,f(u,v)=u/g(v)+g(v),故∂f/∂u=1/g(v),∂2f/∂u∂v=-g′(v)/g2(v)。

  • 第7题:

    单选题
    设函数f(u)可微,且f′(0)=1/2,则z=f(4x2-y2)在点(1,2)处的全微分dz|(1,2)=(  )。
    A

    4dx+2dy

    B

    4dx-2dy

    C

    -4dx+2dy

    D

    -4dx-2dy


    正确答案: A
    解析:
    求全微分,即需求出函数对各个自变量的偏导。令u=4x2-y2,则∂z/∂x=f′(u)·∂u/∂x=f′(u)·8x,∂z/∂y=f′(u)·∂u/∂y=f′(u)·(-2y),将(1,2)代入u=4x2-y2得u=0,又f′(0)=1/2,故dz|(1,2=f′(0)·8dx+f′(0)·(-2·2)dy=4dx-2dy。

  • 第8题:

    填空题
    设函数f(x)在x=2的某邻域内可导,且f′(x)=ef(x),f(2)=1,则f‴(2)=____。

    正确答案: 2e3
    解析:
    因f′(x)=efx方程两边对x求导,得f″(x)=efx·f′(x)=efx·efx=e2fx,两边再对x求导,得f‴(x)=e2fx·2f′(x)=2e2fx·efx=2e3fx。又f(2)=1,则f‴(2)=2e3f2=2e3

  • 第9题:

    单选题
    设F(X)为区间(0,3)上的单峰函数,且F(1)=2、F(2)=1.5,则可将搜索区间(0,3)缩小为()
    A

    (0,2)

    B

    (1,2)

    C

    (2,3)

    D

    (1,3)


    正确答案: C
    解析: 暂无解析

  • 第10题:

    填空题
    设f(u,v)是二元可微函数,z=f(y/x,x/y),则x∂z/∂x-y∂z/∂y=____。

    正确答案: 2(-yf1′/x+xf2′/y)
    解析:
    设f1′为函数f(u,v)对第一中间变量的偏导,f2′为函数f(u,v)对第二中间变量的偏导,则∂z/∂x=f1′·(-y/x2)+f2′·(1/y),∂z/∂y=f1′·(1/x)+f2′·(-x/y2),x∂z/∂x-y∂z/∂y=2(-yf1′/x+xf2′/y)。

  • 第11题:

    单选题
    设函数z=z(x,y)由方程F(x-az,y-bz)=0所给出,其中F(u,v)任意可微,则a∂z/∂x+(b∂z/∂y)=(  )。
    A

    1

    B

    2

    C

    3

    D

    4


    正确答案: D
    解析:
    根据偏导数的求解方法可知∂z/∂x=-Fx′/Fz′=-F1′/(―aF1′―bF2′),∂z/∂y=-Fy′/Fz′=-F2′/(―aF1′―bF2′),故a∂z/∂x+(b∂z/∂y)=-(aF1′+bF2′)/(―aF1′―bF2′)=1。

  • 第12题:

    单选题
    设函数z=z(x,y)由方程F(x-az,y-bz)=0所给出,其中F(u,v)任意可微,则a∂z/∂x+(b∂z/∂y)=(  )。
    A

    0

    B

    1

    C

    2

    D

    4


    正确答案: B
    解析:
    根据偏导数的求解方法可知∂z/∂x=-Fx′/Fz′=-F1′/(―aF1′―bF2′),∂z/∂y=-Fy′/Fz′=-F2′/(―aF1′―bF2′),故a∂z/∂x+(b∂z/∂y)=-(aF1′+bF2′)/(―aF1′―bF2′)=1。

  • 第13题:

    设函数f(x)具有2阶连续导数,若曲线y=f(x)过点(0,0)且与曲线y=^x在点(1,2)处相切,则=________.


    答案:1、2(ln2-1)
    解析:

  • 第14题:

    设函数z=ln(x+y2),则全微分dz=_______.


    答案:
    解析:

  • 第15题:

    设函数z=f(x,y)的全微分为dz=xdx+ydy,则点(0,0)( )《》( )

    A.不是f(x,y)的连续点
    B.不是f(x,y)的极值点
    C.是f(x,y)的极大值点
    D.是f(x,y)的极小值点

    答案:D
    解析:

  • 第16题:

    下列结论不正确的是()。

    • A、z=f(x,y)在点(x0,y0)处可微,则f(x,y)在点(x0,y0)处连续
    • B、z=f(x,y)在点(x0,y0)处可微,则f(x,y)在点(x0,y0)处可导
    • C、z=f(x,y)在点(x0,y0)处可导,则f(x,y)在点(x0,y0)处可微
    • D、z=f(x,y)在点(x0,y0)处偏导数连续,则f(x,y)在点(x0,y0)处连续

    正确答案:C

  • 第17题:

    下列结论不正确的是()。

    • A、y=f(x)在点x0处可微,则f(x)在点x0处连续
    • B、y=f(x)在点x0处可微,则f(x)在点x0处可导
    • C、y=f(x)在点x0处连续,则f(x)在点x0处可微
    • D、y=f(x)在点x0处可导,则f(x)在点x0处连续

    正确答案:C

  • 第18题:

    填空题
    设函数y=y(x)由方程y=f(x2+y2)+f(x+y)所确定,且y(0)=2,其中f是可导函数,f′(2)=1/2,f′(4)=1,则dy/dx|x=0=____。

    正确答案: -1/7
    解析:
    由方程y=f(x2+y2)+f(x+y)。两边对x求导得yx′=f′(x2+y2)(2x+2y·yx′)+f′(x+y)(1+yx′)。
    又y(0)=2,f′(2)=1/2,f′(4)=1,,故y′|x0=f′(4)·4y′|x0+f′(2)(1+y′|x0),y′|x0=4y′|x0+(1+y′|x0)/2,解得y′|x0=-1/7。

  • 第19题:

    单选题
    设函数f(x)=丨x丨,则函数在点x=0处()
    A

    连续且可导

    B

    连续且可微

    C

    连续不可导

    D

    不可连续不可微


    正确答案: C
    解析: 暂无解析

  • 第20题:

    填空题
    设函数f(u)可微,且f′(0)=1/2,则z=f(4x2-y2)在点(1,2)处的全微分dz|(1,2)=____。

    正确答案: 4dx-2dy
    解析:
    求全微分,即需求出函数对各个自变量的偏导。令u=4x2-y2,则∂z/∂x=f′(u)·∂u/∂x=f′(u)·8x,∂z/∂y=f′(u)·∂u/∂y=f′(u)·(-2y),将(1,2)代入u=4x2-y2得u=0,又f′(0)=1/2,故dz|12=f′(0)·8dx+f′(0)·(-2·2)dy=4dx-2dy。

  • 第21题:

    填空题
    设函数z=z(x,y)由方程F(x-az,y-bz)=0所给出,其中F(u,v)任意可微,则a∂z/∂x+(b∂z/∂y)=____。

    正确答案: 1
    解析:
    根据偏导数的求解方法可知∂z/∂x=-Fx′/Fz′=-F1′/(―aF1′―bF2′),∂z/∂y=-Fy′/Fz′=-F2′/(―aF1′―bF2′),故a∂z/∂x+(b∂z/∂y)=-(aF1′+bF2′)/(―aF1′―bF2′)=1。

  • 第22题:

    填空题
    设f(x)是可导函数,且f′(x)=sin2[sin(x+1)],f(0)=4,f(x)的反函数是x=φ(y),则φ′(4)=____。

    正确答案: 1/sin2(sin1)
    解析:
    φ′(4)=1/f′(0)=1/sin2(sin1)。

  • 第23题:

    填空题
    设向量u(→)=3i(→)-4j(→),v(→)=4i(→)+3j(→),且二元可微函数f(x,y)在点P处有∂f/∂u(→)|P=-6,∂f/∂v(→)|P=17,则df|P=____。

    正确答案: 10dx+15dy
    解析: {e()u={3/5,-4/5},e()v={4/5,3/5}。由∂f/∂u()|P=-6,∂f/∂v()|P=17,得∂f/∂x|P×(3/5)+∂f/∂y|P×(-4/5)=-6,∂f/∂x|P×(4/5)+∂f/∂y|P×(3/5)=17,所以∂f/∂x|P=10,∂f/∂y|P=15。故df|P=∂f/∂x|Pdx+∂f/∂y|Pdy=10dx+15dy。

  • 第24题:

    填空题
    设单调可微函数f(x)的反函数为g(x),f(1)=3,f′(1)=2,f″(3)=6则g′(3)=()

    正确答案: 1/2
    解析: 暂无解析