参考答案和解析
正确答案: ≠0
解析:
依据齐次线性方程组性质可知,系数行列式|A|≠0时,方程组仅有零解。
更多“填空题设A为n阶方阵,则n元齐次线性方程组AX(→)=0(→)仅有零解的充要条件是|A|____。”相关问题
  • 第1题:

    设n元齐次线性方程组Ax=o,r(A)=rn,则基础解系含有解向量的个数n个。()

    此题为判断题(对,错)。


    参考答案:错误

  • 第2题:

    设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r(A)=r

    答案:
    解析:

  • 第3题:

    设 A 、 B 为n阶方阵,AB=0 ,则



    答案:C
    解析:

  • 第4题:

    若A是m×n矩阵,且m≠n,则当R(A)=n时,齐次线性方程组AX=0只有零解


    答案:对
    解析:

  • 第5题:

    设A为矩阵,都是齐次线性方程组Ax=0的解,则矩阵A为( )。



    答案:D
    解析:
    提示:由于线性无关,故R(A)= 1,显然选项A中矩阵秩为3,选项B和C中矩阵秩都为2。

  • 第6题:

    设n元齐次线性方程组Ax=0的系数矩阵A的秩为r,则Ax=0有非零解的充要条件为( )。

    A.r=n
    B.r<n
    C.r≥n
    D.r>n

    答案:B
    解析:
    Ax=0有非零解的充要条件为|A|=0,即矩阵A不是满秩的,r<n。

  • 第7题:

    问答题
    设AX=0与BX=0均为n元齐次线性方程组,秩r(A)=r(B),且方程组AX=0的解均为方程组BX=0的解,证明方程组AX=0与BX=0同解.

    正确答案:
    设r(A)=r(B)=r,方程组AX=0的基础解系为①:ζ12,…,ζn-r,方程组BX=0的基础解系为②:η12,…,ηn-r.
    构造向量组③:ζ12,…,ζn-r12,…,ηn-r.
    由向量组①可由②线性表示,则向量组②和③等价,从而r(③)=n-r,所以ζ12,…,ζn-r是向量组③的极大线性无关组,有η12,…,ηn-r可由ζ12,…,ζn-r线性表示,即BX=0的任一解都可由ζ12,…,ζn-r线性表示,故BX=0的解都是AX=0的解,所以方程组AX=0与BX=0同解.
    解析: 暂无解析

  • 第8题:

    单选题
    设A为n阶方阵,则n元齐次线性方程组AX(→)=0(→)仅有零解的充要条件是|A|(  )。
    A

    =0

    B

    ≠0

    C

    =1

    D

    ≠1


    正确答案: B
    解析:
    依据齐次线性方程组性质可知,系数行列式|A|≠0时,方程组仅有零解。

  • 第9题:

    单选题
    n阶矩阵A的伴随矩阵为A*,齐次线性方程组AX=O有两个线性无关的解,则(  ).
    A

    A*X=0的解均是AX=0的解

    B

    AX=0的解均是A*X=O的解

    C

    AX=0与A*X=0无非零公共解

    D

    AX=0与A*X=O仅有2个非零公共解


    正确答案: B
    解析:
    由齐次方程组AX=0有两个线性无关的解向量,知方程组AX=0的基础解系所含解向量的个数为n-r(A)≥2,即r(A)≤n-2<n-1.由矩阵A与其伴随矩阵秩的关系,知r(A*)=0,即A*=0.所以任意n维列向量均是方程组A*X=0的解,故方程组AX=0的解均是A*X=0的解.

  • 第10题:

    填空题
    设n阶矩阵A的各行元素之和均为零,且A的秩为n-1,则线性方程组AX(→)=0(→)的通解为____。

    正确答案: X()=k(1,1,…,1)T
    解析:
    由r(A)=n-1,知方程组AX()0()的基础解系只含有n-(n-1)=1个解向量。又矩阵A的各行元素之和为0,知(1,1,…,1)T,为AX()0()的非零解,则方程组AX()0()的通解为X()=k(1,1,…,1)T

  • 第11题:

    单选题
    设A为n阶方阵,则n元齐次线性方程组AX(→)=0(→)仅有零解的充要条件是|A|(  )。
    A

    <0

    B

    ≠0

    C

    >0

    D

    =0


    正确答案: A
    解析:
    依据齐次线性方程组性质可知,系数行列式|A|≠0时,方程组仅有零解。

  • 第12题:

    矩阵A是m×n矩阵,齐次线性方程组AX=0只有零解的充要条件是A的列向量线性无关。()

    此题为判断题(对,错)。


    参考答案:正确

  • 第13题:

    设A是m×n阶矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是( )。

    A.若Ax=0仅有零解,则Ax=b有惟一解
    B.若Ax=0有非零解,则Ax=b有无穷多个解
    C.若Ax=b有无穷多个解,则Ax=0仅有零解
    D.若Ax=b有无穷多个解,则Ax=0有非零解

    答案:D
    解析:

  • 第14题:

    设n阶矩阵A的伴随矩阵A^*≠0,若ζ1,ζ2,ζ3,ζ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系

    A.不存在.
    B.仅含一个非零解向量.
    C.含有两个线性无关的解向量.
    D.含有三个线性无关的解向量.

    答案:B
    解析:

  • 第15题:

    设A为m×n矩阵,齐次线性方程组Ax=0仅有零解的充要条件是( )。

    A.A的列向量组线性无关
    B.A的列向量组线性相关
    C.A的行向量组线性无关
    D.A的行向量组线性相关

    答案:A
    解析:
    n元齐次线性方程组Ax=0仅有零解的充要条件是r(A)=n,即A的列向量组线性无关。

  • 第16题:

    设A是m×n矩阵,AX=0是AX=b的导出组,则下列结论正确的是( ).《》( )

    A.若AX=0仅有零解,则AX=b有唯一解
    B.若AX=0有非零解,则AX=b有无穷多解
    C.若AX=b有无穷多解,则AX=0仅有零解
    D.若AX=b有无穷多解,则AX=0有非零解

    答案:D
    解析:
    由方程组AX=0有解,不能判定AX=b是否有解;由AX=b有唯一解,知AX=0只有零解;由AX=b由无穷多解,知AX=0有非零解.

  • 第17题:

    填空题
    设A为n阶方阵,则n元齐次线性方程组AX(→)=0(→)仅有零解的充要条件是|A|____。

    正确答案: ≠0
    解析:
    依据齐次线性方程组性质可知,系数行列式|A|≠0时,方程组仅有零解。

  • 第18题:

    单选题
    设A是m×n矩阵,则m<n是齐次线性方程组ATAX(→)=0(→)有非零解的(  )。
    A

    必要条件

    B

    充分条件

    C

    充要条件

    D

    以上都不对


    正确答案: D
    解析:
    充分性:因r(ATA)≤r(A)≤m<n,其中n是ATA的阶数,即方程组ATAX()0()的未知数的个数,故方程组ATAX()0()有非零解;但不必要,因为当m≥n时,r(ATA)≤n≤m,此时方程组可能只有零解,也可能有非零解。

  • 第19题:

    单选题
    n阶矩阵A的伴随矩阵为A*,齐次线性方程组AX(→)=0(→)有两个线性无关的解,则(  )。
    A

    A*X()0()的解均是AX()0()的解

    B

    AX()0()的解均是A*X()0()的解

    C

    AX()0()与A*X()0()无非零公共解

    D

    AX()0()与A*X()0()仅有2个非零公共解


    正确答案: D
    解析:
    由齐次方程组AX()0()有两个线性无关的解向量,知方程组AX()0()的基础解系所含解向量的个数为n-r(A)≥2,即r(A)≤n-2<n-1。由矩阵A与其伴随矩阵秩的关系,知r(A*)=0,即A*=0。所以任意n维列向量均是方程组A*X()0()的解,故方程组AX()0()的解均是A*X()0()的解。

  • 第20题:

    单选题
    n元线性方程组AX(→)=b(→)有唯一解的充要条件为(  )。
    A

    A为方阵且|A|≠0

    B

    导出组AX()0()仅有零解

    C

    秩(A)=n

    D

    系数矩阵A的列向量组线性无关,且常数向量b()与A的列向量组线性相关


    正确答案: C
    解析:
    A项,系数矩阵A不一定是方阵;B项,导出组只有零解,方程组AX()b()不一定有解;C项,当r(A)=n时,不一定有r(A)=r(A(_))=n;D项,b()可由A的列向量组线性表示,则方程组AX()b()有唯一解。

  • 第21题:

    填空题
    设A为n阶方阵,若对任意n×m(m≥n)矩阵B都有AB=0,则A=____。

    正确答案: 0
    解析:
    取基本单位向量组为ε()1ε()2,…,ε()n
    当m=n时,由对任意B都有AB=0,则对B=(ε()1ε()2,…,ε()n)=En也成立,即AE=0,故A=0。
    当m>n时,取B=(ε()1ε()2,…,ε()nB()1)=(EnB()1),则由AB=A(EnB()1)=0,知AEn=0,故A=0。

  • 第22题:

    填空题
    设n阶矩阵A的各行元素之和均为零,且A的秩为n-1,则线性方程组AX=O的通解为____.

    正确答案: X=k(1,1…,1)T
    解析:
    由r(A)=n-1,知方程组AX=0的基础解系只含有n-(n-1)=1个解向量.又矩阵A的各行元素之和为0,知(1,1,…,1)T,为AX=0的非零解,则方程组AX=0的通解为X=k(1,1…,1)T