单选题设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件是(  ).A 向量组α1,α2,…,αm可以由β1,β2,…,βm线性表示B 向量组β1,β2,…,βm可以由α1,α2,…,αm线性表示C 向量组α1,…,αm与向量组β1,…,βm等价D 矩阵A=(α1,…,αm)与矩阵B=(β1,…,βm)β)m

题目
单选题
设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件是(  ).
A

向量组α1,α2,…,αm可以由β1,β2,…,βm线性表示

B

向量组β1,β2,…,βm可以由α1,α2,…,αm线性表示

C

向量组α1,…,αm与向量组β1,…,βm等价

D

矩阵A=(α1,…,αm)与矩阵B=(β1,…,βm)β)m


相似考题
更多“单选题设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件是(  ).A 向量组α1,α2,…,αm可以由β1,β2,…,βm线性表示B 向量组β1,β2,…,βm可以由α1,α2,…,αm线性表示C 向量组α1,…,αm与向量组β1,…,βm等价D 矩阵A=(α1,…,αm)与矩阵B=(β1,…,βm)β)m”相关问题
  • 第1题:

    设A为m×n矩阵,齐次线性方程组Ax=0仅有零解的充要条件是( )。

    A.A的列向量组线性无关
    B.A的列向量组线性相关
    C.A的行向量组线性无关
    D.A的行向量组线性相关

    答案:A
    解析:
    n元齐次线性方程组Ax=0仅有零解的充要条件是r(A)=n,即A的列向量组线性无关。

  • 第2题:

    设A为m×n矩阵,齐次线性方程组AX=0仅有零解的充分条件是( ).

    A.A的列向量组线性无关
    B.A的列向量组线性相关
    C.A的行向量组线性无关
    D.A的行向量组线性相关

    答案:A
    解析:
    因为AX=0仅有零解的充分必要条件是A的秩r(A)=n,所以A的列向量组线性无关是AX=0仅有零解的充分条件.

  • 第3题:

    单选题
    设A为m×n矩阵,齐次线性方程组AX(→)=0(→)仅有零解的充分条件是(  )。
    A

    A的列向量组线性无关

    B

    A的列向量组线性相关

    C

    A的行向量组线性无关

    D

    A的行向量组线性相关


    正确答案: A
    解析:
    因为AX()0()仅有零解的充分必要条件是A的秩r(A)=n,所以A的列向量组线性无关是AX()0()仅有零解的充分条件。

  • 第4题:

    单选题
    下列说法不正确的是(  ).
    A

    s个n维向量α1,α2,…,αs线性无关,则加入k个n维向量β1,β2,…,βk后的向量组仍然线性无关

    B

    s个n维向量α1,α2,…,αs线性无关,则每个向量增加k维分量后得到的向量组仍然线性无关

    C

    s个n维向量α1,α2,…,αs线性相关,则加入k个n维向量β1,β2,…,βk后得到的向量组仍然线性相关.

    D

    s个n维向量α1,α2,…,αs线性无关,则减少一个向量后得到的向量组仍然线性无关.


    正确答案: B
    解析:
    A项,一个线性无关组加入k个线性相关的向量,新的向量组线性相关;B项,线性无关组的延伸组仍为线性无关组;C项,线性相关组加入k个向量,无论k个向量是否相关,构成的新的向量组必是线性相关的;D项,线性无关组中的任意个组合均是无关的.

  • 第5题:

    单选题
    设向量β(→)可由向量组α(→)1,α(→)2,…,α(→)m线性表示,但不能由向量组(Ⅰ):α(→)1,α(→)2,…,α(→)m-1线性表示。记向量组(Ⅱ):α(→)1,α(→)2,…,α(→)m-1,β(→),则(  )。
    A

    α()m不能由(Ⅰ)线性表示,也不能由(Ⅱ)线性表示

    B

    α()m不能由(Ⅰ)线性表示,但可由(Ⅱ)线性表示

    C

    α()m可由(Ⅰ)线性表示,也可由(Ⅱ)线性表示

    D

    α()m可由(Ⅰ)线性表示,但不可由(Ⅱ)线性表示


    正确答案: A
    解析:
    向量β()可由向量组α()1α()2,…,α()m线性表示,不能由向量组α()1α()2,…,α()m1线性表示,则设β()=k1α()1+k2α()2+…+km1α()m1+kmα()m,且km≠0,α()mβ()/km-k1α()1/km-…-km1α()m1/km,说明α()m可由向量组β()α()1α()2,…,α()m1,线性表示,不可由向量组α()1α()2,…,α()m1线性表示。

  • 第6题:

    单选题
    3维向量组A:α1,α2,…,αM线性无关的充分必要条件是().
    A

    对任意一组不全为0的数k1,k2,…,kM,都有后

    B

    向量组A中任意两个向量都线性无关

    C

    向量组A是正交向量组

    D

    αM不能由线性表示


    正确答案: D
    解析: 暂无解析

  • 第7题:

    单选题
    设向量组I:α(→)1,α(→)2,…,α(→)m,其秩为r;向量组II:α(→)1,α(→)2,…,α(→)m,β(→),其秩为s,则r=s是向量组I与向量组II等价的(  )。
    A

    充分非必要条件

    B

    必要非充分条件

    C

    充分必要条件

    D

    既非充分也非必要条件


    正确答案: C
    解析:
    两向量组等价的充要条件是它们有相同的秩。

  • 第8题:

    单选题
    设A是m×n的非零矩阵,B是m×1非零矩阵,满足AB=0,以下选项中不一定成立的是:()
    A

    A的行向量组线性相关

    B

    A的列向量组线性相关

    C

    B的行向量组线性相关

    D

    r(A)+r(B)≤n


    正确答案: B
    解析: 由于AB=0,得到r(A)+r(B)≤n,又由于A,B都是非零矩阵,则r(A)>0,r(B)>0,得r(A)<nr(B)<n。因此A的列向量组线性相关,B的行向量组线性相关。

  • 第9题:

    单选题
    n维向量组α(→)1,α(→)2,…,α(→)s线性无关的充分条件是(  )。
    A

    α()1α()2,…,α()s中没有零向量

    B

    向量组的个数不大于维数,即s≤n

    C

    α()1α()2,…,α()s中任意两个向量的分量不成比例

    D

    某向量β()可由α()1α()2,…,α()s线性表示,且表示法唯一


    正确答案: B
    解析:
    A项,例如α()1=(1,-1,2),α()2=(2,-2,4)都是非零向量,但α()1α()2线性相关;
    B项,如A项中的例子,α()1α()2个数小于维数,但其线性相关;
    C项,例如α()1=(1,0,-1),α()2=(0,3,0),α()3=(1,3,-1)中任意两个向量的分量均不成比例,但α()1α()2α()3线性相关;
    D项,β()可由α()1α()2,…,α()s线性表示,且表示法唯一,即α()1α()2,…,α()sα()1α()2,…,α()sβ()的线性极大无关组,故α()1α()2,…,α()s线性无关。

  • 第10题:

    若A是m×n矩阵,且m≠n,则当A的列向量组线性无关时,A的行向量组也线性无关


    答案:错
    解析:

  • 第11题:

    3维向量组A:α1,α2,…,αM线性无关的充分必要条件是().

    • A、对任意一组不全为0的数k1,k2,…,kM,都有后
    • B、向量组A中任意两个向量都线性无关
    • C、向量组A是正交向量组
    • D、αM不能由线性表示

    正确答案:A

  • 第12题:

    单选题
    设n阶方阵A=(α(→)1,α(→)2,…,α(→)n),B=(β(→)1,β(→)2,…,β(→)n),AB=(γ(→)1,γ(→)2,…,γ(→)n),记向量组(Ⅰ):α(→)1,α(→)2,…,α(→)n;(Ⅱ): β(→)1,β(→)2,…,β(→)n;(Ⅲ):γ(→)1,γ(→)2,…,γ(→)n。如果向量组(Ⅲ)线性相关,则(  )。
    A

    向量组(Ⅰ)与(Ⅱ)都线性相关

    B

    向量组(Ⅰ)线性相关

    C

    向量组(Ⅱ)线性相关

    D

    向量组(Ⅰ)与(Ⅱ)中至少有一个线性相关


    正确答案: A
    解析:
    由向量组(Ⅲ)线性相关,知矩阵AB不可逆,即|AB|=|A|·|B|=0,因此|A|、|B|中至少有一个为0,即A与B中至少有一个不可逆,故向量组(Ⅰ)与(Ⅱ)中至少有一个线性相关。

  • 第13题:

    单选题
    设n维列向量组α(→)1,α(→)2,…,α(→)m(m<n)线性无关,则n维列向量组β(→)1,β(→)2,…,β(→)m线性无关的充分必要条件是(  )。
    A

    向量组α()1α()2,…,α()m可以由β()1β()2,…,β()m线性表示

    B

    向量组β()1β()2,…,β()m可以由α()1α()2,…,α()m线性表示

    C

    向量组α()1α()2,…,α()m与向量组β()1β()2,…,β()m等价

    D

    矩阵A=(α()1α()2,…,α()m)与矩阵B=(β()1β()2,…,β()m)等价


    正确答案: D
    解析:
    例如α()1=(1,0,0,0),α()2=(0,1,0,0),β()1=(0,0,1,0),β()2=(0,0,0,1),各自都线性无关,但它们之间不能相互线性表示,也就不可能有等价关系,排除A、B、C项;
    D项,矩阵A与矩阵B等价,则它们的秩相等,故向量组β()1β()2,…,β()m线性无关。

  • 第14题:

    单选题
    设向量β可以由向量组α1,α2,…,αm线性表示,但不能由向量组(Ⅰ):α1,α2,…,αm-1线性表示,记向量组(Ⅱ):α1,α2,…,αm-1,β,则(  ).
    A

    αm不能由(Ⅰ)线性表示,也不能由(Ⅱ)线性表示

    B

    αm不能由(Ⅰ)线性表示,但可由(Ⅱ)线性表示

    C

    αm可以由(Ⅰ)线性表示,也可由(Ⅱ)线性表示

    D

    αm可由(Ⅰ)线性表示,不可由(Ⅱ)线性表示


    正确答案: C
    解析:
    若αm可由向量组(Ⅰ)线性表示,则β也可由向量组(Ⅰ)线性表示,与题设矛盾,故αm不能由(Ⅰ)线性表示;由β可由α1,α2,…,αm线性表示,知存在一组数k1,k2,…,km,使β=k1α1+k2α2+…+kmαm,且km≠0,否则β就能由(Ⅰ)线性表示,所以αm可由向量组(Ⅱ).

  • 第15题:

    问答题
    设向量β(→)可由向量组α(→)1,α(→)2,…,α(→)r线性表示,但不能由向量组α(→)1,α(→)2,…,α(→)r-1线性表示,证明:  (1)α(→)r不能由向量组α(→)1,α(→)2,…,α(→)r-1线性表示;  (2)α(→)r能由α(→)1,α(→)2,…,α(→)r,β(→)线性表示。

    正确答案:
    (1)(反证法)
    可设α()r能由向量组α()1,α()2,…,α()r-1线性表示,即α()r=k1α()1+k2α()2+…+kr-1α()r-1
    由向量β()可由向量组α()1,α()2,…,α()r线性表示,有β()=l1α()1+l2α()2+…+lr-1α()r-1+lrα()r
    所以有β()=(l1+lrk1)α()1+(l2+lrk2)α()2+…+(lr-1+lrkr-1)α()r-1,即β()可由向量组α()1,α()2,…,α()r-1线性表示,这与已知条件相矛盾,故α()r不能由向量组α()1,α()2,…,α()r-1线性表示。
    (2)由β()=l1α()1+l2α()2+…+lr-1α()r-1+lrα()r和β不能由向量组α()1,α()2,…,α()r-1线性表示,可知lr≠0,故α()r=β()/lr-l1α()1/lr-l2α()2/lr-…-lr-1α()r1/lr,即α()r可由向量组α()1,α()2,…,α()r-1线性表示。
    解析: 暂无解析

  • 第16题:

    单选题
    设α(→)1,α(→)2,…,α(→)s和β(→)1,β(→)2,…,β(→)t为两个n维向量组,且秩(α(→)1,α(→)2,…,α(→)s)=秩(β(→)1,β(→)2,…,β(→)t)=r,则(  )。
    A

    此两个向量组等价

    B

    秩(α()1α()2,…,α()sβ()1β()2,…,β()t)=r

    C

    α()1α()2,…,α()s可以由β()1β()2,…,β()t线性表示时,此二向量组等价

    D

    s=t时,二向量组等价


    正确答案: C
    解析:
    两向量组等价的充要条件是所含向量的个数相等,且能相互线性表示。

  • 第17题:

    单选题
    设α(→)1,α(→)2,…,α(→)s均为n维列向量,A是m×n矩阵,下列选项正确的是(  )。
    A

    α()1α()2,…,α()s线性相关,则Aα()1,Aα()2,…,Aα()s线性相关

    B

    α()1α()2,…,α()s线性相关,则Aα()1,Aα()2,…,Aα()s线性无关

    C

    α()1α()2,…,α()s线性无关,则Aα()1,Aα()2,…,Aα()s线性相关

    D

    α()1α()2,…,α()s线性无关,则Aα()1,Aα()2,…,Aα()s线性无关


    正确答案: A
    解析:
    设有数k1,k2,…,ks,使k1α()1+k2α()2+…+ksα()s0(),则有A(k1α()1+k2α()2+…+ksα()s)=k1Aα()1+k2Aα()2+…+ksAα()s0()。因α()1α()2,…,α()s线性相关,故k1,k2,…,ks不全为0,知Aα()1,Aα()2,…,Aα()s线性相关。

  • 第18题:

    单选题
    设向量组Ⅰ:α(→)1,α(→)2,…,α(→)m,其秩为r;向量组Ⅱ:α(→)1,α(→)2,…,α(→)m,β(→),其秩为s,则r=s是向量组Ⅰ与向量组Ⅱ等价的(  )。
    A

    充分非必要条件

    B

    必要非充分条件

    C

    充分必要条件

    D

    既非充分也非必要条件


    正确答案: A
    解析:
    两向量组等价的充要条件是它们有相同的秩。