单选题如果二阶常系数非齐次线性微分方程y″+ay′+by=e-xcosx有一个特解y*=e-x(xcosx+xsinx),则(  )。A a=-1,b=1B a=1,b=-1C a=2,b=1D a=2,b=2

题目
单选题
如果二阶常系数非齐次线性微分方程y″+ay′+by=e-xcosx有一个特解y*=e-x(xcosx+xsinx),则(  )。
A

a=-1,b=1

B

a=1,b=-1

C

a=2,b=1

D

a=2,b=2


相似考题
更多“如果二阶常系数非齐次线性微分方程y″+ay′+by=e-xcosx有一个特解y*=e-x(xcosx+xsinx),则(”相关问题
  • 第1题:

    若二阶常系数线性齐次微分方程y"+ay'+by=0的通解为y=(C1+C2x)e^x,则非齐次方程y"+ay'+by=x满足条件y(0)=2,y'(0)=0的解为y=________.


    答案:1、y=-xe^x+x+2.
    解析:

  • 第2题:

    是二阶常系数非齐次线性微分方程的一个特解,则

    A.Aa=-3,b=2,c=-1
    B.a=3,b=2,c=-1
    C.a=-3,b=2,c=1
    D.a=3,b=2,c=1

    答案:A
    解析:

    【评注】其实,我们可看出齐次线性微分方程的特征根为1和2,非齐次线性微分方程的一个特解可为y=xe^x,进一步求得a,b,c.

  • 第3题:

    设y1(x)、y2(x)是二阶常系数线性微分方程y″+py′+qy=0的两个线性无关的解,则它的通解为______.


    答案:
    解析:
    由二阶线性常系数微分方程解的结构可知所给方程的通解为其中C1,C2为任意常数.

  • 第4题:

    二阶常系数齐次微分方程y″-4y′+4y=0的通解为_____.


    答案:
    解析:

  • 第5题:

    单选题
    如果二阶常系数非齐次线性微分方程y″+ay′+by=e-xcosx有一个特解y*=e-x(xcosx+xsinx),则(  )。
    A

    a=-1,b=1

    B

    a=1,b=-1

    C

    a=2,b=1

    D

    a=2,b=2


    正确答案: D
    解析:
    由题意可得-1+i为特征方程λ2+aλ+b=0的根,故(i-1)2+a(i-1)+b=0。可得a=2,b=2,故应选(D)。

  • 第6题:

    单选题
    设y1=3+x2,y2=3+x2+e-x是某二阶线性非齐次微分方程的两个特解,且相应的齐次方程有一个解为y3=x,则该方程的通解为(  )。
    A

    y=3-x2+c1x+c2e-x

    B

    y=3+x2-c1x+c2e-x

    C

    y=3+x2+c1x+c2e-x

    D

    y=3+x2+c1x-c2e-x


    正确答案: B
    解析:
    由解的叠加原理可知,y2-y1=e-x是原方程对应齐次方程的一个特解,可知该特解与题中给出的y3=x线性无关,则原方程的通解为y=3+x2+c1x+c2e-x

  • 第7题:

    单选题
    若二阶常系数线性齐次微分方程y″+ay′+by=0的通解为y=(C1+C2x)ex,则非齐次方程y″+ay′+by=x满足条件y(0)=2,y′(0)=0的解为y=(  )。
    A

    xex+x2+2

    B

    -xex+x2+2

    C

    -xex+x+2

    D

    -xex+x


    正确答案: C
    解析:
    由题意可知,r=1是已知齐次方程对应的特征方程的二重根,则该特征方程为(r-1)2=r2-2r+1=0,齐次方程为y″-2y′+y=0设y*=Ax+B为已知非齐次方程y″-2y′+y=x的特解,代入y″-2y′+y=x得0-2A+Ax+B=x,则A=1,B=2A=2。故已知非齐次方程的通解为y=(C1+C2x)ex+x+2。又y(0)=2,y′(0)=0,代入以上通解得C1=0,C2=-1。故所求方程特解为y=-xex+x+2。

  • 第8题:

    填空题
    已知某二阶非齐次线性微分方程的三个解分别为y1=ex,y2=xex,y3=x2ex,则它的通解为____。

    正确答案: y=C1(x-1)ex+C2(x2-1)ex+ex
    解析:
    因为y1=ex,y2=xex,y3=x2ex是二阶非齐次微分方程的特解,故xex-ex,x2ex-ex是该微分方程对应齐次微分方程的两个线性无关的解。故二阶非齐次微分方程的通解为y=C1(xex-ex)+C2(x2ex-ex)+ex,化简可得y=C1(x-1)ex+C2(x2-1)ex+ex

  • 第9题:

    问答题
    设二阶线性微分方程y″+P(x)y′+Q(x)y=f(x)的三个特解是y1=x,y2=ex,y3=e2x,试求此方程满足条件y(0)=1,y′(0)=3的特解。

    正确答案:
    由题意可知,Y1=ex-x、Y2=e2x-x是原方程对应齐次方程的两个线性无关的解[因(ex-x)/(e2x-x)≠常数],故原方程的通解为y=C1(ex-x)+C2(e2x-x)+x,由y(0)=1,y′(0)=3,得C1=-1,C2=2。故所求原方程的特解为y=-(ex-x)+2(e2x-x)+x=2e2x-ex
    解析: 暂无解析

  • 第10题:

    填空题
    设y=ex(c1sinx+c2cosx)(c1、c2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为____。

    正确答案: y″-2y′+2y=0
    解析:
    根据题中所给的通解y=ex(c1sinx+c2cosx)的结构可知,所求方程对应的特征根为λ12=1±i,特征方程为[λ-(1+i)][λ-(1-i)]=λ2-2λ+2=0,则所求方程为y″-2y′+2y=0。

  • 第11题:

    单选题
    以为特解的二阶线性常系数齐次微分方程是()。
    A

    y"-2y'-3y=0

    B

    y"+2y'-3y=0

    C

    y"-3y'+2y=0

    D

    y"-2y'-3y=0


    正确答案: C
    解析: 暂无解析

  • 第12题:

    问答题
    设y1=x,y2=x+e2x,y3=x(1+e2x)是二阶常系数线性非齐次方程的特解,求该方程及其通解。

    正确答案:
    由题意可知,y2-y1=e2x,y3-y1=xe2x是对应齐次方程的两个线性无关的解,齐次方程的通解为y(_)=(C1+C2x)e2x,且特征方程有二重根r1,2=2,则特征方程为(r-2)2=r2-4r+4=0,则齐次方程为y″-4y′+4y=0。
    令所求非齐次方程为y″-4y′+4y=f(x),将其解之一y1=x代入得f(x)=4x-4,则所求方程为y″-4y′+4y=4x-4,又齐次方程的通解为y(_)=(C1+C2x)e2x,且非齐次方程的通解为y=(C1+C2x)e2x+x。
    解析: 暂无解析

  • 第13题:

    已知是某二阶常系数非齐次线性微分方程的3个解,则该方程的通解为y=________.


    答案:
    解析:
    本题主要考查二阶常系数线性微分方程y"+py'+qy=f(x)解的性质和结构,关键是找出对应齐次线性微分方程的两个线性无关的解.由线性微分方程解的性质知是对应齐次线性微分方程的两个线性无关的解,则该方程的通解为,其中C1,C2为任意常数.

  • 第14题:

    3阶常系数线性齐次微分方程的通解为y=________


    答案:
    解析:

  • 第15题:

    二阶线性常系数齐次微分方程y″+2y=0的通解为____.


    答案:
    解析:

  • 第16题:

    以为特解的二阶线性常系数齐次微分方程是()。

    • A、y"-2y'-3y=0
    • B、y"+2y'-3y=0
    • C、y"-3y'+2y=0
    • D、y"-2y'-3y=0

    正确答案:B

  • 第17题:

    填空题
    若二阶常系数线性齐次微分方程y″+ay′+by=0的通解为y=(C1+C2x)ex,则非齐次方程y″+ay′+by=x满足条件y(0)=2,y′(0)=0的解为y=____。

    正确答案: -xex+x+2
    解析:
    由题意可知,r=1是已知齐次方程对应的特征方程的二重根,则该特征方程为(r-1)2=r2-2r+1=0,齐次方程为y″-2y′+y=0设y*=Ax+B为已知非齐次方程y″-2y′+y=x的特解,代入y″-2y′+y=x得0-2A+Ax+B=x,则A=1,B=2A=2。故已知非齐次方程的通解为y=(C1+C2x)ex+x+2。又y(0)=2,y′(0)=0,代入以上通解得C1=0,C2=-1。故所求方程特解为y=-xex+x+2。

  • 第18题:

    单选题
    具有特解y1=e-x,y2=2xe-x,y3=3ex的三阶常系数齐次线性方程是(  )。
    A

    y‴-y″-y′+y=0

    B

    y‴+y″-y′-y=0

    C

    y‴-6y″+11y′-6y=0

    D

    y‴-2y″-y′+2y=0


    正确答案: C
    解析:
    由题设可知,该齐次方程的通解为y=(C1+C2x)ex+C3ex,则r=-1是特征方程的二重特征根,r=1是特征方程的单根,故其特征方程为(r+1)2(r-1)=0即r3+r2-r-1=0。故所求三阶常系数线性齐次方程为y‴+y″-y′-y=0。

  • 第19题:

    单选题
    设y=ex(c1sinx+c2cosx)(c1、c2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为(  )。
    A

    y″-y′+y=0

    B

    y″-2y′+2y=0

    C

    y″-2y′=0

    D

    y′+2y=0


    正确答案: B
    解析:
    根据题中所给的通解y=ex(c1sinx+c2cosx)的结构可知,所求方程对应的特征根为λ12=1±i,特征方程为[λ-(1+i)][λ-(1-i)]=λ2-2λ+2=0,则所求方程为y″-2y′+2y=0。

  • 第20题:

    单选题
    以y1=ex,y2=e-3x为特解的二阶线性常系数齐次微分方程是(  )。[2012年真题]
    A

    y″-2y′-3y=0

    B

    y″+2y′-3y=0

    C

    y″-3y′+2y=0

    D

    y″-2y′-3y=0


    正确答案: D
    解析:
    因y1=exy2=e-3x是特解,故r1=1,r2=-3是特征方程的根,因而特征方程为r2+2r-3=0。故二阶线性常系数齐次微分方程是:y″+2y′-3y=0。

  • 第21题:

    单选题
    (2012)以y1=ex,y2=e-3x为特解的二阶线性常系数齐次微分方程是:()
    A

    y″-2y′-3y=0

    B

    y″+2y′-3y=0

    C

    y″-3y′+2y=0

    D

    y″+2y′+y=0


    正确答案: D
    解析: 暂无解析

  • 第22题:

    填空题
    设y1=3+x2,y2=3+x2+e-x是某二阶线性非齐次微分方程的两个特解,且相应的齐次方程有一个解为y3=x,则该方程的通解为____。

    正确答案: y=3+x2+c1x+c2e-x
    解析:
    由解的叠加原理可知,y2-y1=ex是原方程对应齐次方程的一个特解,可知该特解与题中给出的y3=x线性无关,则原方程的通解为y=3+x2+c1x+c2ex

  • 第23题:

    单选题
    微分方程y″-2y′+y=0的两个线性无关的特解是(  )。[2016年真题]
    A

    y1=x,y2=ex

    B

    y1=ex,y2=ex

    C

    y1=ex,y2=xex

    D

    y1=ex,y2=xex


    正确答案: B
    解析:
    本题中,二阶常系数线性微分方程的特征方程为:r2-2r+1=0,解得:r1=r2=1,故方程的通解为:y2=ex(c1+c2x),则两个线性无关解为c1ex、c2xex(c1、c2为常数)。

  • 第24题:

    单选题
    设y=ex(c1sinx+c2cosx)(c1、c2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为(  )。
    A

    y″+2y′+2y=0

    B

    y″-2y′+2y=0

    C

    y″-2y′-2y=0

    D

    y″+2y′+2y=0


    正确答案: A
    解析:
    根据题中所给的通解y=ex(c1sinx+c2cosx)的结构可知,所求方程对应的特征根为λ12=1±i,特征方程为[λ-(1+i)][λ-(1-i)]=λ2-2λ+2=0,则所求方程为y″-2y′+2y=0。